当前位置:文档之家› 数控机床横向伺服进给系统的设计

数控机床横向伺服进给系统的设计

-- -- 数控机床横向进给伺服系统的设计 目 录 第一章 绪论 1.1 毕业设计的目的 1.2 毕业设计的内容 1.2.1 数控横向进给系统总体设计方案的拟定 1.2.2 进给伺服系统机械部分设计计算 1.2.3 数控机床(直流、交流)伺服控制方案分析与计算 第二章 数控进给系统总体设计方案的拟定 2.1 毕业设计任务书 2.2 总体方案的确定 2.2.1 概述 2.2.2 数控横向进给系统总体设计方案的拟定 第三章 机床进给(直流、交流)伺服系统机械部分设计计算 3.1 系统切削力的确定 3.2 切削力的计算 3.3 滚珠丝杠螺母副的设计、计算、和选型 3.4 进给伺服系统传动计算 3.5 伺服电机的计算和选型 第四章 数控机床(直流、交流)伺服控制方案分析与计算 4.1 数控机床进给(直流、交流)伺服系统组成 4.2 数控机床进给(直流、交流)伺服驱动器的选型 4.3 数控机床进给(直流、交流)伺服驱动器主电路及辅助电路设计与选型 第五章 毕业设计体会 第六章 毕业设计感言 附录 参考文献 --

-- 第一章 绪论 1.1 毕业设计的目的 设计的目的是培养综合运用基础知识和专业知识,解决工程实际问题的能力,提高综合

素质和创新能力,受到本专业工程技术和科学研究工作的基本训练,使工程绘图、数据处理、外文文献阅读、程序编制、使用手册等基本技能得到训练和提高,培养正确的设计思想、严肃认真的科学态度,加强团队合作精神。 1.2 毕业设计的内容 1.2.1数控横向进给系统总体设计方案的拟定 1. 系统运动方式的确定。 2. 伺服系统的选择。 3. 执行机构传动方式的确定。 4. 计算机的选择。 1.2.2 进给伺服系统机械部分设计计算 1. 进给伺服系统机械部分设计方案的确定。 2. 确定脉冲当量。 3. 滚珠丝杠螺母副的选型。 4. 滚动导轨的选型。 5. 进给伺服系统传动计算。 6. 步进电机的计算和选用。 7. 设计绘制进给伺服系统一个坐标轴的机械装配图。 8. 设计绘制进给伺服系统的一张或两张零件图。 1.2.3 数控机床(直流、交流)伺服控制方案分析与计算 1. 数控机床进给(直流、交流)伺服系统组成。 2. 数控机床进给(直流、交流)伺服驱动器的选型 3. 数控机床进给(直流、交流)伺服驱动器主电路及辅助电路设计与选型。 第二章 数控横向进给系统总体设计方案的拟定 2.1 毕业设计任务书 1.题目: 《数控机床横向伺服进给系统的设计》 2.设计任务: (1)根据机床总体布局,分析应采用的机电一体化设计方案,确定横向进给系统的伺服控制方案; (2)进行机械伺服机构的设计计算,绘制机械传动图及相关装配图(1—2张); (3)进行数控机床伺服驱动器的主电路及辅助电路设备的设计与选型; (4)绘制控制系统原理框图; (5)攥写设计说明书一分(8000字以上) -- -- 3.主要技术指标: (1)床身最大加工直径400mm; (2)最大加工长度1000mm,横向定位精度0.075mm; (3)横向最快移动速度max3000mm/minv; (4)横向最快进给速度(工进速度)max400mm/minv ; (5)可以车削柱面、平面、锥面,最大导程24mm; (6)工作台重量100公斤 4.设计要求: (1)机械结构设计合理,控制系统功能完备,原理正确,制图符合国家标准,图面整洁; (2)设计说明书论述清楚,计算无误,数值单位明确,引用公式及资料有出处。 2.2 数控横向进给系统总体设计方案的拟定 2.2.1概述

从最低速到最高速电机都能平稳运转,转矩波动要小,尤其在低速如0.1r /min或更低速时,仍有平稳的速度而无爬行现象。 电机应具有大的较长时间的过载能力,以满足低速大转矩的要求。一般直 伺服电机要求在数分钟内过载4-6倍而不损坏。

为了满足快速响应的要求,电机应有较小的转动惯量和大的堵转转矩,并具有尽可能小的时间常数和启动电压。电机应具有耐受4000rad/s2以上的角加速度的能力,才能保证电机可在0.2s以内从静止启动到额定转速。 电机应能随频繁启动、制动和反转。

随着微电子技术、计算机技术和伺服控制技术的发展,数控机床的伺服系统已开始采用高速、高精度的全数字伺服系统。使伺服控制技术从模拟方式、混合方式走向全数字方式。由位置、速度和电流构成的三环反馈全部数字化、软件处理数字PID,使用灵活,柔性好。数字伺服系统采用了许多新的控制技术和改进伺服性能的措施,使控制精度和品质大大提高[4]。

数控机床进给运动系统,尤其是轮廓控制的进给运动系统,必须在进给定位及进给速度两个方面同时实现自动控制。对于数控机床进给速度控制方面的问题与本书前几部分所讨论过的调速控制系统相类似,而有关数控机床在进给定位上的问题则属于对运动轨迹的跟踪控制问题,而解决这个问题的控制系统就是通常 所说的伺服控制系统。

伺服控制系统也叫随动控制系统,它属于自动控制系统中的一种。与调速系统不同,伺服控制系统要解决的主要问题是如何让系统能精确跟踪输入指令的变化,按要求迅速而精确地到达指定位置。在机电设备中,伺服系统具有重要的地位,被广泛地应用于工业生产、国防、机器人等的各个领域。高性能的伺服控制系统可以提供灵活、方便、准确、快速的伺服运动控制。

伺服控制技术在机械制造行业中用的最多也最为广泛,各种机床运动部分的速度控制、运动轨迹控制、位置控制都是依靠各种伺服系统控制完成的。它们不仅能完成转动控制、直线运动控制,而且能依靠多套伺服系统的配合,完成复杂空间曲线的运动控制,如仿型机床的加工轨迹、机器人手臂关节的运动控制等。它们可以完成的运动控制精度高、速度快,远非一般工人操作所能达到。 -- -- 在其它领域,伺服控制系统也有较为广泛的应用。如冶金工业中的电弧钢炉、粉末冶金炉的电极位置控制等;运输行业中的电气机车自动调速、高层建筑物中电梯的升降控制、船舶的自动操舵等,以及军事上的雷达天线的自动瞄准跟踪控制、战术导弹自动跟踪控制,防空导弹的制导控制等等。

伺服控制系统大体上可以分为模拟式伺服控制系统和数字式伺服控制系统。模拟式伺服控制系统的稳态精度受到位置检测元件和运算放大器的精度限制,通常只能达到角分(')级。如要进一步提高伺服系统的稳态精度,就必须采用数字计算机控制器,用高精度数字式元件(如光电编码器等)作位置反馈元件,实现模拟伺服系统的数字化。

从另一方面来看,自动控制技术和计算机技术的发展也为伺服控制系统的数字化提供了必须的基础。自动控制理论的高速发展,为数字伺服控制系统的研制者提供了不少新的控制规律以及相应的分析和综合方法;计算机技术的飞速发展,为数字伺服系统研制者提供了实现这些控制规律的可能性;尤其是半导体技术的发展,更加快了使伺服驱动技术进入全数字化时期脚步,使伺服控制器的小型化指标取得了很大的进步。IGBT(绝缘栅双极晶体管)的发展,使交流伺服控制系统的应用领域逐步超过直流伺服控制系统。可以这样说:随着自动控制、半导体技术、计算机技术和整个工业的不断发展,伺服控制技术也取得了极大的进步,伺服控制系统已经进入了全数字化和交流化的时代。

图2-1和图2-2是模拟伺服系统与数字伺服系统的系统组成原理框图。

图2-1 模拟伺服控制系统的组成原理框图 --

-- 图2-2 数字伺服控制系统的组成原理框图 图2-1中所示为由电流环、速度环、位置环所构成的三环位置伺服控制系统。这是一个模拟的或称为连续信号的位置伺服系统,系统中的各种物理量:电动机电流、电动机转速、输出的位置、给定信号等均为模拟量;电流控制器、速度控制器、位置控制器均为由运算放大器所构成的模拟调节器。

图2-2中所示的是数字伺服系统的组成原理框图。从图中可以看出,在模拟伺服系统的基础上,将模拟控制的控制功能用数字计算机来代替,作为数字控制器,这就构成了计算机控制的数字伺服控制系统。而这一替换使伺服系统发生质 的飞跃。

值得注意的是:数字伺服系统与普通模拟伺服系统一样,都是闭环反馈控制系统。所不同的是,数字控制系统中不仅含有数字元件,而且也含有模拟元件。这也就是说信号在系统的传递过程中一部分是连续的模拟信号,一部分是离散的数字信号,数字信号与模拟

信号必须通过数-模(D/A)或模-数(A/D)转换才能进行传递,这就须要在系统中加上能够实现数字信号与模拟信号相互转换的接口装置。综上所述,比较模拟伺服系统与数字伺服系统,可以总结出以下特点:

① 在模拟控制伺服系统中,各处的信号都是连续的模拟信号;而数字伺服控制系统中,除了含有连续模拟信号外,还含有离散信号、数字信号等多种信号。因此,数字伺服控制系统是模拟信号和数字信号的混合控制系统。

② 在模拟伺服控制系统中,控制规律是由运算放大器通过不同电路元件的连接实现的,控制规律越复杂,所需要的模拟电路往往越多,如果要修改控制规律,一般必须改变原有的电路结构;而在数字伺服控制系统中,控制规律是由数字控制器通过编写算法程序实现的,修改一个控制规律,只需要修改计算机控制器的算法程序,一般不用对硬件电路进行改动,而且由于计算机具有丰富的指令系统和很强的逻辑判断能力,从而能够实现模拟电路不能实现的复杂控制规律,因此具有更好的灵活性与适应性。

③ 在模拟伺服控制系统中,一般一个控制器占用一套控制设备,控制一个回路;而在数字伺服控制系统中,由于数字控制器具有高速运算能力,一个控制器可以包含多个数字控制程序,可以采用分时控制的方式,同时控制多个回路。

④ 采用数字方式进行伺服系统的控制,如分级数字控制系统、集散控制系统、计算机网络等,便于实现控制与管理的一体化,使得伺服控制系统的自动化水平进一步提高。

⑤ 由于数字伺服控制系统需要同时处理数字信号与模拟信号,所以与模拟伺服控制系统相比,数字伺服控制电路需要额外的、能够实现数字信号与模拟信号相互转换的接口驱动电路,以保证信号的有效传递。

2.2.2 数控横向进给系统总体设计方案的拟定 1.(简述数控伺服系统闭环控制方案中的闭环与半闭环控制方案,然后选定控制方案)。

相关主题