当前位置:文档之家› 异步串行UART协议详解 中文版

异步串行UART协议详解 中文版

异步串行UART协议

7.1.1 串行口的结构
2个物理上独立的接收、发送缓冲器SBUF,占用同一地 个物理上独立的接收、发送缓冲器 个物理上独立的接收 , 址99H ;接收器是双缓冲结构 。

7.1.2 串行口的控制
1、串行口控制寄存器SCON (98H)
设定工作方式、接收 发送控制以及设置状态标志 设定工作方式、接收/发送控制以及设置状态标志 SCON (98H)
SM0
SM1
SM2
REN
TB8
RB8
TI
RI
SM0、SM1:工作方式设置位 、 :

SM2,多机通信控制位。 ,多机通信控制位。
主要用于方式2和方式 。 主要用于方式 和方式3。对于接收机 和方式 SM2=0,收到 ,收到RB8(0或1)既可使收到的数据进入 ( 或 )既可使收到的数据进入SBUF, , 并激活RI。 并激活 。 SM2=1,收到的 信息丢弃, ,收到的RB8=0时,收到的信息丢弃,不激活 ; = 时 收到的信息丢弃 不激活RI 若收到的RB8=1时,收到的数据进入 数据进入SBUF,并激活 ,进而 若收到的 = 时 收到的数据进入 ,并激活RI, 读走。 在中断服务中将数据从 读走 在中断服务中将数据从SBUF读走。 方式0时 必须是0。 方式 时,SM2必须是 。 必须是 方式1时 才激活。 方式 时,SM2=1时,只有接收到有效停止位时,RI才激活。 时 只有接收到有效停止位时, 才激活
REN,允许串行接收位。 ,允许串行接收位。
置REN=1,启动串口接收过程 , 置REN=0,则禁止串口接收 ,

TB8,在方式 、3中,是发送数据的第 位 ,在方式2、 中 是发送数据的第9位 数据的奇偶校验位 地址帧/数据帧的标志位 地址帧 数据帧的标志位
RB8,在方式 、3中,是接收到数据的第 位 ,在方式2、 中 是接收到数据的第9位 奇偶校验位 地址帧/数据帧的标志位 数据帧的标志位。 地址帧 数据帧的标志位。
方式1时 是接收到的停止位。 方式 时,若SM2=0,则RB8是接收到的停止位。 , 是接收到的停止位

TI,发送中断标志位。 ,发送中断标志位。
方式0时 串行发送第 位数据结束时 方式 时,串行发送第8位数据结束时 其它方式, 其它方式,串行发送停止位的开始时 硬件使TI置 ,发中断申请。 硬件使 置1,发中断申请。必须在中断服务程序中 软件将其清0。 用软件将其清 。
RI,接收中断标志位。 ,接收中断标志位。
方式0时,串行接收第8位数据结束时 方式 时 串行接收第 位数据结束时 其它方式, 其它方式,串行接收停止位的中间时 硬件使RI置 ,发中断申请。 硬件使 置1,发中断申请。必须在中断服务程序中 软件将其清0。 用软件将其清 。

2、电源功能寄存器PCON (87H)
PCON (87H)
SMOD
SMOD, 波特率倍增位。 , 波特率倍增位。 在方式1、 、 时 波特率与SMOD有关: 有关: 在方式 、2、3时,波特率与 有关 SMOD=1时,波特率提高一倍。复位时, 时 波特率提高一倍。复位时, SMOD=0。 。

7.2 串行口的工作方式
工作方式0 工作方式 工作方式1 工作方式 工作方式2 工作方式 工作方式3 工作方式

串行口工作方式
SM0、SM1 工作方式 00 01 10 11 方式0 方式1 方式2 方式3 功能描述 波特率
8位同步移位寄 Fosc/12 存器 10位UART 可变,由定时器 控制 11位UART Fosc/64或fosc/32 11位UART 可变,由定时器 控制
其中fosc为晶振频率。

方式0 方式
7.2.1 工作方式0
同步移位寄存器的输入输出方式。 同步移位寄存器的输入输出方式。用于扩展并行输入或 引脚输入或输出, 输出口。数据由RXD引脚输入或输出,移位脉冲由 输出口。数据由 引脚输入或输出 移位脉冲由TXD引 引 脚输出。 位数据 波特率为fosc/12。 位数据。 脚输出。8位数据。波特率为 。 方式0发送 方式 发送
写写SBUF
S6P2 SEND SHIFT RXD(DATA OUT) TXD(SHIFT CLOCK) S3P1 S6P1 TI D0 D1 D2 D3 D4 D5 D6 D7

方式0接收 方式 接收
清清SCON中的RI位
RI RECEIVE SHIFT RXD(DATA IN) D0 S5P2 TXD(SHIFT CLOCK) D1 D2 D3 D4 D5 D6 D7
方式0接收和发送电路 方式 接收和发送电路

7.2.2 工作方式1
方式1 方式
10位数据的异步通信。帧格式如图所示。 位数据的异步通信。帧格式如图所示。 位数据的异步通信
空 闲 起 始 位 D0 1帧共10位 数据位8位 D7 MSB 停 止 位 空 闲
方式1发送 方式 发送
TX CLOCK
写写SBUF
LSB
SEND S1P1 DATA
SHIFT TXD
起起位
D0
D1
D2
D3
D4
D5
D6
D7
停停位
TI

方式1接收 方式 接收
RX CLOCK RXD
起起位
D0
D1
D2
D3
D4
D5
D6
D7
停停位
位位位位位位位位
SHIFT RI
置REN为1时,接收器检测到 为 时 接收器检测到RXD引脚输入电平发 引脚输入电平发 生负跳变时,则说明起始位有效, 生负跳变时,则说明起始位有效,将其移入输入移位 寄存器,并开始接收这一帧信息的其余位。 寄存器,并开始接收这一帧信息的其余位。 当RI=0,且SM2=0(或接收到的停止位为1)时, , (或接收到的停止位为 ) 将收到的9位数据的前 位装入SBUF,第9位(停止位) 位数据的前8位装入 将收到的 位数据的前 位装入 , 位 停止位) 进入RB8,并置 请求中断。 进入 ,并置RI=1,向CPU请求中断。 , 请求中断

7.2.3 工作方式2、3
方式2和方式 方式 和方式3 和方式
11位数据的异步通信。 位数据的异步通信。 位数据的异步通信
起始位1位 数据 位 停止位1位 起始位 位,数据9位,停止位 位 方式2的波特率固定为晶振频率的 的波特率固定为晶振频率的1/64或1/32 方式 的波特率固定为晶振频率的 或 方式3的波特率由定时器 的溢出率决定 的波特率由定时器T1的溢出率 方式 的波特率由定时器 的溢出率决定

方式2和方式 发送 方式 和方式3发送 和方式
TX CLOCK
写写SBUF
SEND S1P1 DATA SHIFT TXD
起起位
D0
D1
D2
D3
D4
D5
D6
D7
TB8
停停位
TI STOP BIT GEN
先把起始位0输出到 先把起始位 输出到TXD,然后发送移位寄存器的 输出到 , 输出位( )。 )。每一移位脉冲都使输出移位寄存器 输出位(D0)。每一移位脉冲都使输出移位寄存器 的各位移动一位,并由TXD引脚输出。 引脚输出。 的各位移动一位,并由 引脚输出 最后一次移位后, 最后一次移位后,置TI=1,请求中断。 ,请求中断。

方式2和方式 接收 方式 和方式3接收 和方式
RX CLOCK RXD
起起位 停停位
D0
D1
D2
D3
D4
D5
D6
D7
RB8
位位位位位位位位
SHIFT RI
数据从右边移入输入移位寄存器, 数据从右边移入输入移位寄存器,最后一次移位 位数据为1) 后,若RI=0,且SM2=0(或接收到的第 位数据为 ) , (或接收到的第9位数据为 接收到的数据装入接收缓冲器SBUF和RB8(接 时,接收到的数据装入接收缓冲器 和 ( 收数据的第9位),置RI=1,向CPU请求中断。 收数据的第 位),置 , 请求中断。 请求中断 如果条件不满足,则数据丢失,且不置位RI 如果条件不满足,则数据丢失,且不置位

波特率的计算
方式0、 的波特率是固定的 而方式1、 的波 的波特率是固定的, 方式 、2的波特率是固定的,而方式 、3的波 特率是可变的,由定时器T1的溢出率来决定 的溢出率来决定。 特率是可变的,由定时器 的溢出率来决定。 方式0波特率 方式 波特率 = fosc/12 方式2波特率 ( 方式 波特率 =(2SMOD/64)? fosc ) 方式1波特率 ( 溢出率) 方式 波特率 =(2SMOD/32)?(T1溢出率) ) ( 溢出率 方式3波特率 ( 溢出率) 方式 波特率 =(2SMOD/32)?(T1溢出率) ) ( 溢出率 T1 溢出率 = fosc /{12×[256 -(TH1)]} × -( ) T1方式 ,TR1=1(以启动定时器) 方式2, 方式 (以启动定时器)


串行口初始化具体步骤: 串行口初始化具体步骤:
确定T1的工作方式(编程 寄存器); 确定 的工作方式(编程TMOD寄存器); 的工作方式 寄存器 计算T1的初值 装载TH1、TL1; 的初值, 计算 的初值,装载 、 ; 启动T1(编程TCON中的 中的TR1位); 启动 (编程 中的 位 确定串行口控制(编程SCON寄存器); 寄存器); 确定串行口控制(编程 寄存器 串行口在中断方式工作时, 串行口在中断方式工作时,还要进行中断设置 编程IE、 寄存器 寄存器)。 (编程 、IP寄存器)。

7.3 串行口应用举例
用串行口扩展I/O口 用串行口扩展 口 用串行口进行双机异步通信 用串行口进行多机异步通信

cc2530串口UART0通信实验(20200627130016)

/********************* 头文件*************************************************/ #include #include /********************* 宏定义*************************************************/ #define uint unsigned int #define uchar unsigned char // --------------- LED 控制端口------------------------------- // #define GLED P1_0〃绿色LED定义 #define RLED P1_1〃红色LED定义 // --------------- 按键输入端口------------------------------- // #define KEY1 P0_0 /********************* 全局变量**********************************************/ unsigned char Uart0_Rx; unsigned char Text_Data[]=" 海舟物联网教育!\r\n"; /********************* 函数声明***********************************************/ void Delay(uint); void Init_LED(void); void Init_Uart0(void); void Init_Sysclk(void); void Uart0_TX_Data(unsigned char *Data,int len); /****************************************************************************** * 函数名称: void Delay(uint n) * 函数功能: 软件延时函数 * 入口参数: * 出口参数: * 备注: ******************************************************************************/ void Delay(uint n) { uint i; for(i=0;i

UART异步串口

MSP430程序库<二>UART异步串口 串行通信接口是处理器与其他设备进行数据通信最常用的方式之一。我的这个程序库是针对MSP430f14系列和MSP430f16系列的,我常用的单片机是这两款:msp430f149,ms p430f169。这两款单片机中均有两个增强型串行通信接口,都可以进行同步或是异步通信,甚至169的模块USART0还能进行进行I2C协议通信。在这里,我们只讨论异步串行通信。 硬件介绍: MSP单片机的USART模块可以配置成SPI(同步通信)模式或UART(异步通信)模式,这里只讨论UART方式。UART数据传输格式如下: 起始位,数据位由高到低7/8位,地址位0/1位,奇偶校验位奇偶或无,停止位1/2位。数据位位数、地址位、奇偶校验位、停止位均可由单片机内部寄存器控制;这两款单片机都有两个USART模块,有两套独立的寄存器组;以下寄存器命中出现x代表0或是1,0代表对应0模块的寄存器,1代表对应1模块的寄存器;其中,与串口模式设置相关的控制位都位于UxCTL寄存器,与接收相关的控制位都位于UxRCTL寄存器,与发送相关的控制位都位于UxTCTL寄存器;波特率设置用UxBR0、UxBR1、UxMCT L三个寄存器;接收与发送有独立的缓存UxRXBUF、UxTXBUF,并具有独立的移位寄存器和独立的中断;中断允许控制位位于IE1/2寄存器,中断标志位位于IFG1/2寄存器。 波特率设置:430的波特率设置用三个寄存器实现, UxBR0:波特率发生器分频系数低8位。 UxBR1:波特率发生器分频系数高8位。 UxMCTL:波特率发生器分频系数的小数部分实现。 设置波特率时,首先要选择合适的时钟源:USART模块可以设置的时钟源有UCLK引脚、ACLK、SMCLK;对于较低的波特率(9600以下),可选ACLK作为时钟源,这样,在LPM3(低功耗3)模式下,串口仍能正常发送接收数据;另外,由于串口接收过程有一个三取二判决逻辑,这至少需要三个时钟周期,因此分频系数必须大于3;波特率高于9600时,将不能使用ACLK作为时钟源,要调为频率较高的SMCLK作为时钟源;另外还可以外部输入UCLK时钟。分频系数计算公式如下:

UART串口通信设计实例

2.5 UART串口通信设计实例(1) 接下来用刚才采用的方法设计一个典型实例。在一般的嵌入式开发和FPGA设计中,串口UART是使用非常频繁的一种调试手段。下面我们将使用Verilog RTL编程设计一个串口收发模块。这个实例虽然简单,但是在后续的调试开发中,串口使用的次数比较多,这里阐明它的设计方案,不仅仅是为了讲解RTL编程,而且为了后续使用兼容ARM9内核实现嵌入式开发。 串口在一般的台式机上都会有。随着笔记本电脑的使用,一般会采用USB转串口的方案虚拟一个串口供笔记本使用。图2-7为UART串口的结构图。串口具有9个引脚,但是真正连接入FPGA开发板的一般只有两个引脚。这两个引脚是:发送引脚TxD和接收引脚RxD。由于是串行发送数据,因此如果开发板发送数据的话,则要通过TxD线1 bit接着1 bit 发送。在接收时,同样通过RxD引脚1 bit接着1 bit接收。 再看看串口发送/接收的数据格式(见图2-8)。在TxD或RxD这样的单线上,是从一个周期的低电平开始,以一个周期的高电平结束的。它中间包含8个周期的数据位和一个周期针对8位数据的奇偶校验位。每次传送一字节数据,它包含的8位是由低位开始传送,最后一位传送的是第7位。

这个设计有两个目的:一是从串口中接收数据,发送到输出端口。接收的时候是串行的,也就是一个接一个的;但是发送到输出端口时,我们希望是8位放在一起,成为并行状态(见图2-10)。我们知道,串口中出现信号,是没有先兆的。如果出现了串行数据,则如何通知到输出端口呢?我们引入“接收有效”端口。“接收有效”端口在一般情况下都是低电平,一旦有数据到来时,它就变成高电平。下一个模块在得知“接收有效”信号为高电平时,它就明白:新到了一个字节的数据,放在“接收字节”端口里面。

Verilog程序6、UART(串口通信)

这个程序没有仿真、没有测试。。 1 UART功能设计 1.1 UART的工作原理 异步通信时,UART发送/接收数据的传输格式如图1所示,一个字符单位由开始位、数据位、停止位组成。 异步通信的一帧传输经历以下步骤: (1)无传输。发送方连续发送信号,处于信息“1”状态。 (2)起始传输。发送方在任何时刻将传号变成空号,即“1”跳变到“O”,并持续1位时间表明发送方开始传输数据。而同时,接收方收到空号后,开始与发送方同步,并期望收到随后的数据。 (3)奇偶传输。数据传输之后是可供选择的奇偶位发送或接收。 (4)停止传输。最后是发送或接收的停止位,其状态恒为“1”。 其程序的结构框图如下: 该程序的效果是串口接受到从计算机发送过来的数据后,又把数据发回给计算机,串口通信是串行的。 其uart.v为顶层文件,包含其他模块,speed_select.v文件的作用为为uart_rx.v和uart_tx.v 设置波特率。

uart.v(顶层文件) `timescale 1ns / 1ps ///////////////////////////////////////////////////////////////////// ///////////// // Company: // Engineer: // // Create Date: 16:08:27 11/12/2010 // Design Name: // Module Name: uart // Project Name: // Target Devices: // Tool versions: // Description: // // Dependencies: // // Revision: // Revision 0.01 - File Created // Additional Comments: // ///////////////////////////////////////////////////////////////////// ///////////// module uart(clk,rst_n,rs232_rx,rs232_tx); input clk,rst_n,rs232_rx; output rs232_tx; wire bps_start1,bps_start2,clk_bps1,clk_bps2,rx_int; wire [7:0] rx_data; //发送模块的时钟 speed_select speed_tx ( .clk(clk), .rst_n(rst_n), .bps_start(bps_start2), .clk_bps(clk_bps1) ); //接受模块的时钟 speed_select speed_rx ( .clk(clk), .rst_n(rst_n), .bps_start(bps_start2), .clk_bps(clk_bps2)

dsp实验-UART串口通信实验

实验八、UART串口通信实验 一、实验目的 1. 了解RS232通信接口的基本原理; 2. 熟悉通信接口芯片(TL16C550C)在DSP I/O空间寄存器的地址映射 及工作原理; 3.了解异步通信中串口模式选择、设置数据传输格式、设置波特率、建立连接、传输数据和断开连接等功能。 二、实验设备 1. 集成开发环境CCS 2. 实验开发板TMS320VC5402DSK、RS232接口电缆线及附件 3.程序“串口调试程序v2.2.exe” 三、实验内容及步骤 实验操作流程参照前面实验。 1 在汇编环境调试Uart:(实现字符或文件的发送和回发功能) a. 实验代码main.s54、uartasm.cmd和uart_init.s54、dsp_init.s54 以及uartasm.h54,c5402_dsk.gel(说明同前)。 b. 串口调试程序“串口调试程序v2.2.exe” , 汇编调试中Build option设置情况与CODEC实验中的汇编调试设置及出错情况相同。 c. 程序文件介绍: 1)“uart.h54”定义了一些寄存器的地址以及函数类型。 2)“dsp_init.s54”与dsp工作有关的寄存器ST1、PMST、IMR、IFR和SWWSR,并且清除INTM位以及设定时钟模式。 3)“uart_init.s54”先检测UART模块是否工作正常,然后设定UART模块的寄存器,如CNTL1、CNTL2、LCR、MSB&LSB(设定波特率)、FCR、IER 等。 4)“main.s54”主程序查看标志位,检测是否UART存在有效接收数据。若有,则执行一定的处理,包括亮LED以及将接收的数据从UART回发。 d. 执行程序时,只要发送数据时,可在串口调试程序的接收窗口立即看到回发的数据。 e. 程序中UART工作参数设置如下: 1)波特率9600(或更低)、无数据校验、字符长度8比特、停止位1、

UART实验程序解析

//UART实验程序解析 //头文件 #include #include #include "inc/hw_ints.h" #include "inc/hw_memmap.h" #include "inc/hw_types.h" #include "driverlib/debug.h" #include "driverlib/fpu.h" #include "driverlib/gpio.h" #include "driverlib/interrupt.h" #include "driverlib/sysctl.h" #include "driverlib/uart.h" #include "driverlib/rom.h" #include "driverlib/pin_map.h" //串口接收中断服务程序 void UARTIntHandler(void) { ui32 ulStatus; //获取中断状态 ulStatus = ROM_UARTIntStatus(UART0_BASE, true); //清除中断标志 ROM_UARTIntClear(UART0_BASE, ulStatus); //直到串口FIFO中没有数据时才退出循环 while(ROM_UARTCharsAvail(UART0_BASE)) { //读串口接收的字符并回发 ROM_UARTCharPutNonBlocking(UART0_BASE,

ROM_UARTCharGetNonBlocking(UART0_BASE)); } } //串口发送函数 void UARTSend(const ui8 *pucBuffer, ui32 ulCount) { while(ulCount--) { //将要发送的字符写进UART ROM_UARTCharPutNonBlocking(UART0_BASE, *pucBuffer++); } } int main(void) { //使能FPU FPUEnable(); FPULazyStackingEnable(); //设置时钟直接使用外部晶振 ROM_SysCtlClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_OSC | SYSCTL_OSC_MAIN | SYSCTL_XTAL_16MHZ); //使能用到的外设 ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA); ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0); //配置PA0和PA1为串口0引脚 ROM_GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);

UART串行口简介

UART异步串行口 UART异步串行口简介 数据通信的基本方式可分为并行通信与串行通信两种: 并行通信:是指利用多条数据传输线将一个资料的各位同时传送。它的特点是传输速度快,适用于短距离通信,但要求通讯速率较高的应用场合。 串行通信:是指利用一条传输线将资料一位位地顺序传送。特点是通信线路简单,利用简单的线缆就可实现通信,降低成本,适用于远距离通信,但传输速度慢的应用场合。 UART 异步串行口的传输格式 异步通信以一个字符为传输单位,通信中两个字符间的时间间隔是不固定的,然 而在同一个字符中的两个相邻位代码间的时间间隔是固定的。 通信协议(通信规程):是指通信双方约定的一些规则。在使用异步串口传送一个 字符的信息时,对资料格式有如下约定:规定有空闲位、起始位、资料位、奇偶校验位、停止位。通讯时序图如下: 开始前,线路处于空闲状态,送出连续“1”。传送开始时首先发一个“0”作为 起始位,然后出现在通信线上的是字符的二进制编码数据。 每个字符的数据位长可以约定为5 位、6 位、7 位或8 位,一般采用ASCII 编码。后面是奇偶校验位,根据约定,用奇偶校验位将所传字符中为“1”的位数凑成奇 数个或偶数个。也可以约定不要奇偶校验,这样就取消奇偶校验位。 最后是表示停止位的“1”信号,这个停止位可以约定持续1 位、1.5 位或2 位 的时间宽度。 至此一个字符传送完毕,线路又进入空闲,持续为“1”。经过一段随机的时间后,下一个字符开始传送才又发出起始位。 每一个数据位的宽度等于传送波特率的倒数。微机异步串行通信中,常用的波特 率为110,150,300,600,1200,2400,4800,9600 ,19200,38400,115200等。 S3C2410的异步串行口 1

verilog编写的uart程序

// UART_FPGA.v 顶层模块,实现由ARM控制FPGA读取串口数据,经过ARM返回给FPGA串口发送出去; `timescale 1ns/1ns module UART_FPGA( //EMIF PIN input wire [10:0] EADDR_pin /* synthesis syn_noclockbuf = 1 */, inout wire [15:0] EDATA_pin , input wire EnOE_pin /* synthesis syn_noclockbuf = 1 */, input wire EnWE_pin /* synthesis syn_noclockbuf = 1 */, input wire EnGCS1_pin /* synthesis syn_noclockbuf = 1 */, output wire EINT2_pin , //LED_run output wire LED_run_pin , //UART output wire UART_TXD0 , input wire UART_RXD0 /* synthesis syn_noclockbuf = 1 */, //test signal output wire TXD_test, output wire RXD_test, output reg TXD_start, output wire EINT2_test, output wire TXD_over_test, output wire uart_send_WR, //FPGA SYSTEM PIN input wire nRESET_pin /* synthesis syn_noclockbuf = 1 */, input wire CLK_50M_pin ); wire [15:0] write_data;

SPI、I2C、UART三种串行总线的原理、区别及应用

简单描述: SPI 和I2C这两种通信方式都是短距离的,芯片和芯片之间或者其他元器件如传感器和芯片之间的通信。SPI和IIC是板上通信,IIC有时也会做板间通信,不过距离甚短,不过超过一米,例如一些触摸屏,手机液晶屏那些很薄膜排线很多用IIC,I2C能用于替代标准的并行总线,能连接的各种集成电路和功能模块。I2C 是多主控总线,所以任何一个设备都能像主控器一样工作,并控制总线。总线上每一个设备都有一个独一无二的地址,根据设备它们自己的能力,它们可以作为发射器或接收器工作。多路微控制器能在同一个I2C总线上共存这两种线属于低速传输; 而UART是应用于两个设备之间的通信,如用单片机做好的设备和计算机的通信。这样的通信可以做长距离的。UART和,UART就是我们指的串口,速度比上面三者快,最高达100K左右,用与计算机与设备或者计算机和计算之间通信,但有效范围不会很长,约10米左右,UART优点是支持面广,程序设计结构很简单,随着USB的发展,UART也逐渐走向下坡; SmBus有点类似于USB设备跟计算机那样的短距离通信。 简单的狭义的说SPI和I2C是做在电路板上的。而UART和SMBUS是在机器外面连接两个机器的。 详细描述: 1、UART(TX,RX)就是两线,一根发送一根接收,可以全双工通信,线数也比较少。数据是异步传输的,对双方的时序要求比较严格,通信速度也不是很快。在多机通信上面用的最多。 2、SPI(CLK,I/O,O,CS)接口和上面UART相比,多了一条同步时钟线,上面UART 的缺点也就是它的优点了,对通信双方的时序要求不严格不同设备之间可以很容易结合,而且通信速度非常快。一般用在产品内部元件之间的高速数据通信上面,如大容量存储器等。 3、I2C(SCL,SDA)接口也是两线接口,它是两根线之间通过复杂的逻辑关系传输数据的,通信速度不高,程序写起来也比较复杂。一般单片机系统里主要用来和24C02等小容易存储器连接。 SPI:高速同步串行口。3~4线接口,收发独立、可同步进行 UART:通用异步串行口。按照标准波特率完成双向通讯,速度慢 SPI:一种串行传输方式,三线制,网上可找到其通信协议和用法的 3根线实现数据双向传输 串行外围接口 Serial peripheral interface UART:通用异步收发器 UART是用于控制计算机与串行设备的芯片。有一点要注意的是,它提供了

Verilog编写的RS232(Uart)程序

module my_uart_top( clk,rst_n, rs232_rx,rs232_tx ); input clk; lk(clk), st_n(rst_n), .bps_start(bps_start1), .clk_bps(clk_bps1) , ); my_uart_rx my_uart_rx( .clk(clk), st_n(rst_n), .rs232_rx(rs232_rx), .rx_data(rx_data), .rx_int(rx_int), .clk_bps(clk_bps1), % .bps_start(bps_start1) ); lk(clk), st_n(rst_n), .bps_start(bps_start2), .clk_bps(clk_bps2) ); ` my_uart_tx my_uart_tx( .clk(clk), st_n(rst_n), .rx_data(rx_data), .rx_int(rx_int), .rs232_tx(rs232_tx), .clk_bps(clk_bps2), .bps_start(bps_start2) ); . endmodule module my_uart_rx( clk,rst_n, rs232_rx,rx_data,rx_int, …

clk_bps,bps_start ); input clk; // 50MHz主时钟 input rst_n; //低电平复位信号 input rs232_rx; // RS232接收数据信号 input clk_bps; // clk_bps的高电平为接收或者发送数据位的中间采样点 output bps_start; //接收到数据后,波特率时钟启动信号置位 ` output[7:0] rx_data; //接收数据寄存器,保存直至下一个数据来到 output rx_int; //接收数据中断信号,接收到数据期间始终为高电平 //---------------------------------------------------------------- reg rs232_rx0,rs232_rx1,rs232_rx2,rs232_rx3; //接收数据寄存器,滤波用 wire neg_rs232_rx; //表示数据线接收到下降沿 always @ (posedge clk or negedge rst_n) begin { if(!rst_n) begin rs232_rx0 <= 1'b0; rs232_rx1 <= 1'b0; rs232_rx2 <= 1'b0; rs232_rx3 <= 1'b0; end else begin rs232_rx0 <= rs232_rx; : rs232_rx1 <= rs232_rx0; rs232_rx2 <= rs232_rx1; rs232_rx3 <= rs232_rx2; end end //下面的下降沿检测可以滤掉<20ns-40ns的毛刺(包括高脉冲和低脉冲毛刺), //这里就是用资源换稳定(前提是我们对时间要求不是那么苛刻,因为输入信号打了好几拍) //(当然我们的有效低脉冲信号肯定是远远大于40ns的) , assign neg_rs232_rx = rs232_rx3 & rs232_rx2 & ~rs232_rx1 & ~rs232_rx0; //接收到下降沿后neg_rs232_rx置高一个时钟周期 //---------------------------------------------------------------- reg bps_start_r; reg[3:0] num; //移位次数 reg rx_int; //接收数据中断信号,接收到数据期间始终为高电平

UART串口通信实验报告

实验四 UART 串口通信 学院:研究生院 学号:1400030034 姓名:张秋明 一、 实验目的及要求 设计一个UART 串口通信协议,实现“串 <-->并”转换功能的电路,也就是 “通用异步收发器”。 二、 实验原理 UART 是一种通用串行数据总线,用于异步通信。该总线双向通信,可以实 现全双工传输和接收。在嵌入式设计中,UART 用来主机与辅助设备通信,如汽 车音响与外接AP 之间的通信,与PC 机通信包括与监控调试器和其它器件,如 EEPROM 通信。 UART 作为异步串口通信协议的一种,工作原理是将传输数据的每个字符一 位接一位地传输。 其中各位的意义如下: 起始位:先发出一个逻辑” 0的信号,表示传输字符的开始。 资料位:紧接着起始位之后。资料位的个数可以是 4、5、6、7、8等,构成 一个字符。通常采用ASCII 码。从最低位开始传送,靠时钟定位。 奇偶校验位:资料位加上这一位后,使得“ 1的位数应为偶数(偶校验)或奇数 (奇校验),以此来校验资料传送的正确性。 停止位:它是一个字符数据的结束标志。可以是 1位、1.5位、2位的高电 平。由于数据是在传输线上定时的,并且每一个设备有其自己的时钟,很可能 在通信中两台设备间出现了小小的不同步。 因此停止位不仅仅是表示传输的结束, 并且提供计算机校正时钟同步的机会。适用于停止位的位数越多,不同时钟同步 的容忍程度越大,但是数据传输率同时也越慢。 空闲位:处于逻辑“ 1状态,表示当前线路上没有资料传送。 波特率:是衡量资料传送速率的指标。表示每秒钟传送的符号数(symbol )。 一个符号代表的信息量(比特数)与符号的阶数有关。例如资料传送速率为 120 字符/秒,传输使用256阶符号,每个符号代表8bit ,则波特率就是120baud,比 特率是120*8=960bit/s 。这两者的概念很容易搞错。 三、 实现程序 library ieee; use ieee.std 」o gic_1164.all; end uart; architecture behav of uart is en tity uart is port(clk : in std_logic; rst_n: in std 」o gic --系统时钟 --复位信号 rs232_rx: in std 」o gic rs232_tx: out std 」o gic --RS232接收数据信号; --RS232发送数据信号;); use ieee.std_logic_ un sig ned.all;

UART串口通信实验报告

实验四UART串口通信 学院:研究生院学号:1400030034姓名:张秋明 一、实验目的及要求 设计一个UART串口通信协议,实现“串<-->并”转换功能的电路,也就是“通用异步收发器”。 二、实验原理 UART是一种通用串行数据总线,用于异步通信。该总线双向通信,可以实现全双工传输和接收。在嵌入式设计中,UART用来主机与辅助设备通信,如汽车音响与外接AP之间的通信,与PC机通信包括与监控调试器和其它器件,如EEPROM通信。 UART作为异步串口通信协议的一种,工作原理是将传输数据的每个字符一位接一位地传输。 其中各位的意义如下: 起始位:先发出一个逻辑”0”的信号,表示传输字符的开始。 资料位:紧接着起始位之后。资料位的个数可以是4、5、6、7、8等,构成一个字符。通常采用ASCII码。从最低位开始传送,靠时钟定位。 奇偶校验位:资料位加上这一位后,使得“1”的位数应为偶数(偶校验)或奇数(奇校验),以此来校验资料传送的正确性。 停止位:它是一个字符数据的结束标志。可以是1位、1.5位、2位的高电平。由于数据是在传输线上定时的,并且每一个设备有其自己的时钟,很可能在通信中两台设备间出现了小小的不同步。因此停止位不仅仅是表示传输的结束,并且提供计算机校正时钟同步的机会。适用于停止位的位数越多,不同时钟同步的容忍程度越大,但是数据传输率同时也越慢。 空闲位:处于逻辑“1”状态,表示当前线路上没有资料传送。 波特率:是衡量资料传送速率的指标。表示每秒钟传送的符号数(symbol)。一个符号代表的信息量(比特数)与符号的阶数有关。例如资料传送速率为120字符/秒,传输使用256阶符号,每个符号代表8bit,则波特率就是120baud,比特率是120*8=960bit/s。这两者的概念很容易搞错。 三、实现程序 library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_arith.all; use ieee.std_logic_unsigned.all; entity uart is port(clk : in std_logic; --系统时钟 rst_n: in std_logic; --复位信号 rs232_rx: in std_logic; --RS232接收数据信号; rs232_tx: out std_logic --RS232发送数据信号;); end uart; architecture behav of uart is

UART硬件和软件验证流程

AN462 硬件和软件验证流程 Rev. _1 — 7 August 1987 应用规格书 文件信息 信息内容 关键词UART,软硬件验证 摘要这个流程是用于检验主机(控制处理器)、UART和印制电路板之间的信号、总线、电气连接和时序的正确性。以下流程的执行和结果的验证不需要任 何其它的测试设备(逻辑分析仪、协议分析仪,示波器等),它是基于处 理器能够读写UART,并且所得到的结果能显示给操作者的假设之上 的。如果无法完全确认简单的读写操被正确的执行,那么针对UART连 接的其它检验都是不可靠的。

1. 概述 这个流程是用于检验主机(控制处理器)、UART和印制电路板之间的信号、总线、电气连接和时序的正确性。以下流程的执行和结果的验证不需要任何其它的测试设备(逻辑分析仪、协议分析 仪,示波器等),它是基于处理器能够读写UART,并且所得到的结果能显示给操作者的假设之 上的。如果无法完全确认简单的读写操被正确的执行,那么针对UART连接的其它检验都是不可 靠的。 2. 总流程 首先,对相关的寄存器进行写和读的操作,在这些操作中与时钟有关的有片选、读、写信号; 其次,通过读取状态寄存器的值来观察所写入的几个控制寄存器的结果;接下来建议的几个流程用 于验证总线数据流并采用“本地循环回送”的模式来验证接收器和发送器的运行,“本地循环回 送”模式(所有的数据的发送和接收发生在UART内部)用于产生处理器中断或查询状态。这些流 程的正确执行将表明内部寄存器、总线接口、时钟发生器、计数器和振荡器的正常运行,没有得到 验证的是振荡器的频率、TxD和 RxD与外部端口及普通输入输出管脚的连接。 3. 注释 在硬件和软件的验证模式中,读取状态寄存器的状态是非常有效的,它对于检测那些在”已验证” 过的硬件和软件上出现的“随机”或“少见”的错误也很有效。状态的读取可以在对设备进行操作 之前和之后进行,寄存器的内容将反映异常状况发生的时间地点,这将使得UART的内部状态与外 部连接、时序、软件一样具有了可见性。例一:在硬件复位后读取状态将显示发送器空标志位置 位,这表示发送器已经使能(在硬件复位后将立即返回0x00),然而软件并没有使能发送器,因此 有人会把原因归结于:特殊的干扰,复位信号下降沿太缓慢等等,所有这些就像执行了一个发送器 使能的命令,如果这种情况确实发生,采取进一步的验证操作来修正错误的意义并不大。例二:在 对UART复位和执行几个操作之后,并且在使能接收器之前,发现有一些接收器数据状态位置位 (如奇偶校验出错),这表示接收器已经使能,并且收到数据(虽然我们并没在软件上对接收器执 行使能的命令),这可能是由于时序的冲突(可能是地址总线上的)移动了接收器FIFO的读取指针而 导致了上电后接收器FIFO的随机状态的上报。经常还出现软件的不同模块都控制UART,并且各控 制是独立的情况,这将导致更多的情况出现。 <12NC> ?Koninklijke Philips Electronics N.V. 2004. All rights reserved.应用规格书Rev. _1 — 7 August 1987 2 of 11

UART是什么-串口工作过程分析

UART是什么?串口工作过程分析 一、UART是什么 UART是通用异步收发传输器(Universal Asynchronous Receiver/Transmitter),通常称作UART,是一种异步收发传输器,是设备间进行异步通信的关键模块。UART负责处理数据总线和串行口之间的串/并、并/串转换,并规定了帧格式;通信双方只要采用相同的帧格式和波特率,就能在未共享时钟信号的情况下,仅用两根信号线(Rx 和Tx)就可以完成通信过程,因此也称为异步串行通信。 若加入一个合适的电平转换器,如SP3232E、SP3485,UART 还能用于RS-232、RS-485 通信,或与计算机的端口连接。UART 应用非常广泛,手机、工业控制、PC 等应用中都要用到UART。 UART使用的是异步,串行通信。串行通信是指利用一条传输线将资料一位位地顺序传送。特点是通信线路简单,利用简单的线缆就可实现通信,降低成本,适用于远距离通信,但传输速度慢的应用场合。异步通信以一个字符为传输单位,通信中两个字符间的时间间隔多少是不固定的,然而在同一个字符中的两个相邻位间的时间间隔是固定的。数据传送速率用波特率来表示,即每秒钟传送的二进制位数。例如数据传送速率为120字符/秒,而每一个字符为10位(1个起始位,7个数据位,1个校验位,1个结束位),则其传送的波特率为10×120=1200字符/秒=1200波特。数据通信格式如下图: 其中各位的意义如下:起始位:先发出一个逻辑”0”信号,表示传输字符的开始。数据位:可以是5~8位逻辑”0”或”1”。如ASCII码(7位),扩展BCD码(8位)。小端传输校验位:数据位加上这一位后,使得“1”的位数应为偶数(偶校验)或奇数(奇校验) 停止位:它是一个字符数据的结束标志。可以是1位、1.5位、2位的高电平。空闲位:处于逻辑“1”状态,表示当前线路上没有资料传送。注:异步通信是按字符传

实验四 UART串口通信实验报告

实验四UART串口通信 一、实验目的及要求 设计一个UART串口通信协议,实现“串<-->并”转换功能的电路,也就是“通用异步收发器”。 二、实验原理 UART是一种通用串行数据总线,用于异步通信。该总线双向通信,可以实现全双工传输和接收。在嵌入式设计中,UART用来主机与辅助设备通信,如汽车音响与外接AP之间的通信,与PC机通信包括与监控调试器和其它器件,如EEPROM通信。 UART作为异步串口通信协议的一种,工作原理是将传输数据的每个字符一位接一位地传输。 其中各位的意义如下: 起始位:先发出一个逻辑”0”的信号,表示传输字符的开始。 资料位:紧接着起始位之后。资料位的个数可以是4、5、6、7、8等,构成一个字符。通常采用ASCII码。从最低位开始传送,靠时钟定位。 奇偶校验位:资料位加上这一位后,使得“1”的位数应为偶数(偶校验)或奇数(奇校验),以此来校验资料传送的正确性。 停止位:它是一个字符数据的结束标志。可以是1位、1.5

位、2位的高电平。由于数据是在传输线上定时的,并且每一个设备有其自己的时钟,很可能在通信中两台设备间出现了小小的不同步。因此停止位不仅仅是表示传输的结束,并且提供计算机校正时钟同步的机会。适用于停止位的位数越多,不同时钟同步的容忍程度越大,但是数据传输率同时也越慢。 空闲位:处于逻辑“1”状态,表示当前线路上没有资料传送。 波特率:是衡量资料传送速率的指标。表示每秒钟传送的符号数(symbol)。一个符号代表的信息量(比特数)与符号的阶数有关。例如资料传送速率为120字符/秒,传输使用256阶符号,每个符号代表8bit,则波特率就是120baud,比特率是120*8=960bit/s。这两者的概念很容易搞错。 三、实现程序 library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_arith.all; use ieee.std_logic_unsigned.all; entity uart is port(clk : in std_logic; --系统时钟rst_n: in std_logic; --复位信号 rs232_rx: in std_logic; --RS232接收

实验七 UART串口通信

实验七UART串口通信 一、实验目的 1.能够理解UART串口通信的基本原理和通信过程。 2.学会通过配置寄存器,实现串口通信的基本操作过程。 二、实验内容 通过对单片机编程来实现UART串口通信的基本过程,通过串口调试助手发送数据到单片机,并在数码管上显示出来。 三、实验参考原理 3.1 串行通信的初步认识 通信按照基本类型可以分为并行通信和串行通信。并行通信时数据的各个位同时传送,可以实现字节为单位通信,但是因为通信线多占用资源多,成本高。比如我们前边用到的 P0 = 0xfe;一次给P0的8个IO口分别赋值,同时进行信号输出,类似于有8个车道同时可以过去8辆车一样,这种形式就是并行的,我们习惯上还称P0、P1、P2和P3为51单片机的4组并行总线。 而串行通信,就如同一条车道,一次只能一辆车过去,如果一个0xfe这样一个字节的数据要传输过去的话,假如低位在前高位在后,那发送方式就是0-1-1-1-1-1-1-1-1,一位一位的发送出去的,要发送8次才能发送完一个字节。 在STC89C52上,有两个引脚,是专门用来做UART串口通信的,一个是P3.0一个是P3.1,还分别有另外的名字叫做RXD和TXD,这两个引脚是专门用来进行UART通信的,如果我们两个单片机进行UART串口通信的话,那基本的演示图如图3-1所示。 图3-1 单片机之间UART通信示意图 图中,GND表示单片机系统电源的参考地,TXD是串行发送引脚,RXD是串行接收引脚。两个单片机之间要通信,首先电源基准得一样,所以我们要把两个单片机的GND相互连起来,然后单片机1的TXD引脚接到单片机2的RXD引脚上,即此路为单片机1发送而单片机2接收的通道,单片机1的RXD引脚接到单片机2的TXD引脚上,即此路为单片机2发送而单片机2接收的通道。这个示意图就体现了两个单片机各自收发信息的过程。 当单片机1想给单片机2发送数据时,比如发送一个0xE4这个数据,用二进制形式表示就是0b11100100,在UART通信过程中,是低位先发,高位后发的原则,那么就让TXD 首先拉低电平,持续一段时间,发送一位0,然后继续拉低,再持续一段时间,又发送了一位0,然后拉高电平,持续一段时间,发了一位1......一直到把8位二进制数字0b11100100

STM32 Uart串口中断响应、发送接收详细程序

程序实现功能:可以直接接收USART1的数据,并通过串口调试输出显示 #include"stm32f10x_lib.h" void NVIC_Configuration(void); void RCC_Configuration(void); void GPIO_Configuration(void); ErrorStatus HSEStartUpStatus; USART_InitTypeDef USART_InitStructure; USART_ClockInitTypeDef USART_ClockInitStructure; int main() { #ifdef DEBUG debug #endif RCC_Configuration(); NVIC_Configuration(); GPIO_Configuration(); /*串口传输速率的大小必须与RCC所设定的时钟相对应起来*/ USART_ART_BaudRate = 9600; //设置USART的传输速率/*设定数据的接收发送模式*/ USART_ART_WordLength = USART_WordLength_8b;//在一帧中传输或接受8位数据位 USART_ART_StopBits = USART_StopBits_1; //定义在帧的结尾传输一个停止位 USART_ART_Parity = USART_Parity_No; //奇偶失能 USART_ART_HardwareFlowControl = USART_HardwareFlowControl_None; //指定硬件流控制模式RTS和CTS使能 USART_ART_Mode = USART_Mode_Rx | USART_Mode_Tx; //指定使能或失能发送和接受模式Tx发送使能和Rx接收使能 USART_Clock ART_Clock = USART_Clock_Disable; //提升USART时钟时使能还是失能,钟低电平活动 USART_ART_CPOL = USART_CPOL_Low; //指定SLCK引脚上时钟的极性 USART_ART_CPHA = USART_CPHA_2Edge; //时钟第二个边缘进行数据捕获 USART_ART_LastBit = USART_LastBit_Disable; //在SCLK引脚上输出最后发送的那个数据字的脉冲不从SCLK输出 USART_ClockInit(USART1, &USART_ClockInitStructure); USART_Init(USART1, &USART_InitStructure); /*输入输出的中断使能*/ // USART_ITConfig(USART1, USART_IT_TXE, ENABLE); USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);

相关主题