当前位置:文档之家› 苍南仪表流量计Modbus通信协议V1.2

苍南仪表流量计Modbus通信协议V1.2

苍南仪表流量计MODBUS通信协议

―――V1.2

一、协议概述

1.1 MODBUS协议内容符合GB/Z 1958

2.1/2/3-2004(IEC60870-5)标准。

1.2该协议适用于本厂的LWQZ气体智能涡轮流量计、LLQZ智能罗茨流量计、LUXZ智能旋进漩涡流量

计、EVC体积修正仪等产品。

1.3主要特点

设备属性:流量计为MODBUS通信总线上的从站

通信模式:RTU

通信媒介:RS485

通信地址:1-247

波特率: 1200、2400、4800、9600、19200 bps

数据位:8位

校验位:无校验(2个停止位)、偶校验(1个停止位)、奇校验(1个停止位)

1.4 特殊性

本协议针对流量计而开发,支持多字节二进制数、ASCII字符串、BCD码等类型变量的数据通信;

通信选用MODBUS的03H、07H功能码,并增设用户自定义的66H功能码;

二、支持的MODBUS功能码

功能码,数据帧格式如下:

2.1 功能码03:读取起始地址在start_addr起N个字的数据。见表1。

主站发送:addr, 03, start_addr_hi ,start_addr_low, N_hi,N_low, CRC

从站响应:addr, 03, num, data(0),….,data(num-1), CRC

异常响应:addr, 83H, error_code, CRC

表1 寄存器地址 变量名称 寄存器数目N 类型 单位

0000H 工况累积量 4 BIN m3

0004H 标况累积量 4 BIN Nm3

0008H 工况流量 2 BIN m3/h

000AH 标况流量 2 BIN Nm3/h

000CH 温度 2 BIN ℃

000EH 压力 2 BIN kPa 其中:

z起始地址:由start_addr_hi、start_addr_low 2个字节组成,依次为起始地址的高字节、低字节;

起始地址必须为表1第1列中的数值,否则流量计回复地址出错(error_code =2);

z寄存器数目N:由N_hi、N_low 2个字节组成,表示读取N个字(1个字由2个字节组成)的数据;

z num:表示数据的个数, data(i),i=0,…,num, num=2N。

z error_code代码参见表4。

示例1(出厂默认:Cod为01,Cdr为23,bps为9600)

z主站发送:17 03 00 04 00 04 073E

地址功能码起始地址寄存器数目 CRC效验码

z从站响应:17 03 08 00000039412524E1 9D25

地址功能码字节数工况流量效验码

z变量数据为8字节二进制数表示的标准累积流量,高位在先,其中前6个字节为整数部分,后两个为小数部分,解包得数据3752229.144Nm3/h。

z附数据解包说明:

1)整数部分十六进制数00 00 00 39 41 25等于十进制的3752229;

2)小数部分十六进制数24 E1等于十进制数的0.14406;

3)结果为3752229.14,单位:Nm3/h

示例2读寄存器数据(此例中将当前积算仪显示的数据读出)

z主站发送:17 03 00 00 00 10 46F0

地址功能码起始地址寄存器数目CRC校验码

z从站响应:17 03 20 00 00 00 37 12 05 A0 43 00 00 00 37 12 05 A0 43 地址功能码接收字节数工况累积量标况累积量

00 01 CB 6B 00 01 CB 89 00 00 14 00 00 00 65 53 06 85

工况流量标况流量温度压力效验码

备注:当主机发送的数据帧出错,从机不应答响应error_code代码,此时拒绝主机继续发送命令。

2.2 功能码07,读取流量计的1个字节的状态数据。见表2。

主站发送:addr, 07, CRC

从站响应:addr, 07,status, CRC

表2 BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0

1

有硬件

故障

工况

流量

低报警

工况

流量

高报警

电池

欠压1

报警

电池

欠压2

报警

瞬时流量

偏低

正在按键

操作

有外

电源

无硬件

故障工况流量

大于报警

低限

工况流量

小于报警

高限

电池电压

大于报警

限1

电池电压

大于报警

限2

瞬时流量

正常

无按键

无外

电源

2.3功能码66H,用户自定义的功能码,用于读取流量计内部历史数据。见表3。

表3

寄存器地址 变量名称 寄存器数目N 类型 说明

0063H 记录起始时间 1 BCD 注1 0064H 当前时间 3 BCD 注2 0067H 仪表生产信息 18 ASCII 注3 0079H 实时记录 17 BCD/BIN 注4 008AH 月记录 5 BCD/BIN 注5 008FH 启停记录 8 BCD/BIN 注6 0097H 防剪断记录 4 BCD/BIN 注7

2.3.1读最近第M个实时记录(1条记录)

主站发送:addr, 66H, 00, 64H, 02H,M_hi, M_low, CRC

从站响应:addr,66H ,22H,psum(BIN),sum(BIN),q0(BIN),t(BIN),p(BIN),year(BCD),month(BCD), day(BCD),hour(BCD),minite(BCD),sec(BCD), CRC

2.3.2读最近第M个月记录(1条记录)

主站发送:addr, 66H, 00, 65H, 02H, M_hi,M_low, CRC

从站响应:addr,66H, 0AH, sum(BIN), year(BCD), month(BCD), CRC

2.3.3读最近第M个启/停记录(1条记录)

主站发送:addr, 66H, 00, 66H, 02H,M_hi, M_low, CRC

从站响应:addr,66H,10H,sum(BIN),year(BCD),month(BCD),day(BCD),hour(BCD),

minite(BCD),sec(BCD), ssflag(byte),0, CRC

2.3.4读最近第M个传感器被剪断或接上时的记录(1条记录,仅配接机械计数器的智能积算仪适用)

主站发送:addr, 66H, 00, 67H, 02H,M_hi, M_low, CRC

从站响应:addr,66H,08H ,year(BCD),month(BCD),day(BCD),hour(BCD),

minite(BCD),sec(BCD), bkflag(byte),0, CRC

备注:

z M为字,用2个字节表示,M_hi为高字节,M_low为低字节;读最近的一条记录时,M=1;

当M=0或大于流量计内部保存的记录数时,流量计返回数值为0的一个序列。

z psum(BIN),sum(BIN):用8字节8位二进制数表示的累积量,高位在先,其中前6个字节为整数,后2个字节为小数;单位:m3。

z q0(BIN):用4字节8位二进制数表示的标况瞬时流量,高位在先,其中前3个字节为整数,后1个字节为小数;单位:Nm3/h。

z t(BIN):用4字节8位二进制数表示的温度,高位在先,其中前3个字节为整数,后1个字节为小数;

单位:℃。

z p(BIN):用4字节8位二进制数表示的压力,高位在先,其中前3个字节为整数,后1个字节为小数;

单位:KPa。

z year,month,day,hour,minite,sec 为单字节BCD码,分别表示年(以2000年为起点,20不显示)、月、日、时、分、秒。

z ssflag为启/停标记,当ssflag=55H时,表示该记录为启动记录;当ssflag=0EEH时,表示该记录为停止记录。

z bkflag为正常/剪断标记,当bkflag=55H时,表示该记录为传感器连线恢复正常时的记录;当bkflag =0EEH时,表示该记录为传感器连线被剪断时的记录。

注1:记录起始时间:用于指定实时记录的起始时间,2个字节,小时-分钟;秒时间默认为0;

注2:当前时间:年月日时分秒,6个字节,BCD码,其中年为1个字节(以2000年为起点,20不显示):注3:仪表生产信息:36个字节,ASCII码;其中厂家代码10字,产品型号12个字节,产品序号8个字节,软件版本3个字节,生产日期3个字节(年月日);

注4:实时记录 :一条实时数据记录共34个字节,包括工况累积量8个字节(8位二进制数,单位:m3)、标况累积量8个字节(8位二进制数,单位:m3)、瞬时流量4个字节(8位二进制数,单位:m3/h)、温度4个字节(8位二进制数,单位:℃)、压力4个字节(8位二进制数,单位:kPa)、时间6个字节(BCD码,年月日时分秒)

注5:月记录; 一条月记录共10个字节,标况累积量8字节(8位二进制数,单位:m3)、时间2个字节(BCD码,年月)

注6:启停记录:一条启停记录共15个字节,标况累积量8个字节(8位二进制数,单位:m3)、时间6个字节(BCD码,年月日时分秒)、启停标记1个字节(55H表示流量从无到有,EEH表示流量从有到无)、

0(保留字节);

注7:防剪断记录:一条防剪断记录共8个字节,时间6个字节(BCD码,年月日时分秒)、防剪断标记1 个字节(55H表示传感器线束被接通,为正常情况;EEH表示传感器线束被剪断,为异常情况;记录时间为接通或被剪断的时间)、0(保留字节)。

2.4 流量计在收到一个通讯帧后没有响应的几种情况:

2.4.1收到数据帧的通讯地址字节与本机地址不同时;

2.4.2收到数据帧的通讯地址字节(等于0)是广播地址时;

2.4.3收受到数据帧的CRC校验出错时;

2.5.4收受到数据帧的命令码出错时。

2.5 异常响应

当从机接受到一个发给本机的数据帧、CRC校验正确,并检测到异常时,

从站响应为:addr, function_code+128,error_code,CRC

备注:function_code:为主机命令帧中的功能码(第二个字节),function_code+128即功能码字节的最高位置1,表示异常;

表4

数值故障含义

02 变量地址无效

03 数值无效

三、数据类型

在表格中的数据有3种类型: BIN、BCD码和ASCII码:

3.1、BIN :二进制数,高字节在前,低字节在后;分别有4种情形:

1字节(无小数,无符号);

2字节(无小数,无符号);

4字节(最后1位小数,第一个字节最高位是符号位,1表示负数,0表示正数);

(例外,个别变量,最后3位表示小数,第一个字节为整数位,包括符号位);

8字节(最后2位小数,无符号;实时记录显示的工况累积量和标况累积量小数位后一个字节 默认为00,小数位按一个字节计算。)

3.2、BCD码:1个字节表示2位数值,数值范围为0-9;

3.3、ASCII码:字符,8位,一个字节ASCII码,表示1个英文字母或数字;

四、特殊说明

为了兼容原自定义的流量计通讯协议,增加一条特殊的指令格式:

4.1、数据位为8位,无奇偶校验。即将通信模式Cod设定为10;

4.2、流量计的地址(ADDR)出厂默认值为023,即16进制的17,地址。

4.3、02命令读测量参数

4.3.1、上位机向流量计发送:

55H, 55H, ADDR, 02,00, ChkSum

4.3.2、流量计向上位机应答的数据帧:

55H, 55H, ADDR, 02, 18, DevStatus, DevErr, Qm, Qo, t, p, sum, ChkSum

备注:

z55H,55H为数据帧的引导字符,表示数据帧的开始;

z ADDR 为流量计的通信地址,1个字节,取值范围1—247;

z02 为通信命令号,1个字节,读测量参数;

z18为数据长度,1个字节,表示它后面有18H个字节的数据;

z Qm(工况流量),Qo(标况流量),t(温度),p(压力),sum(累积量);

z ChkSum 为校验和,1个字节,其数值是从Address起到ChkSum前的全部数据之和的低8位数据;z DevStatus:为状态码,1个字节,其各位的含义见表5:

表5

BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0

1 命令不

响应

Qo

报警

睡眠有外

电源

压缩因

子补偿

有按键电池

欠压

流量

偏小

0 命令

响应

Qo

不报警

不睡眠无外

电源

不补偿无按键电池

正常

流量

正常

z DevErr:为故障代码,1个字节,其各位的含义见表6:

表6 BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0

1 频率

电路

故障

温度

传感器

异常

压力

传感器

异常

A/D转

换电路

异常

RAM

故障

EE

PROM

故障

串行口

通信

故障

时钟

电路

故障

0 频率

电路

正常

温度

传感器

正常

压力

传感器

正常

A/D转

换电路

正常

RAM

正常

EE

PROM

正常

串行口

通信

正常

时钟

电路

正常

z工况流量、标况流量、温度、压力采用4个字节(单精度)的浮点数表示,依次为P,SMH,MM,ML,用F(Float)表示:FloatData = ±0.MH-MM-ML*2P

z累积量采用6个字节的浮点数表示,依次为P,SMH,MM,ML,ML1,ML2,用F(Float)表示: FloatData = ±0.MH-MM-ML-ML1-ML2*2P

其中: P :阶码,1个字节,以十六进制补码的形式表示;

SMH :尾数的高字节,1个字节,最高位(第7位)为符号位S,S=1 表示数据为负,S=0 则数据为正;其余7位为浮点数尾数的高7位,第0到6位;

MM :尾数的中间字节,1个字节,第7到14位;

ML :尾数的低字节,1个字节,第15到23位;

ML1 :尾数的低字节,1个字节,第24到31位;

ML2 :尾数的低字节,1个字节,第32到39位;

示例3:

z上位机向流量计发送的数据帧:

55 55 17 02 00 19

55H 55H ADDR CMD Len1 ChkSum

z流量计向上位机应答的数据帧:

55 55 17 02 18 15 00 00 00 00 00 00 00 00 00 05 50 00 00 07 65 4C CC

55H 55H ADDR 02 18 DevStatus DevErr Qm Qo t p

16 72 82 4A 49 25 E1

sum ChkSum

z以阶码的十进制数值为界线把尾数分成整数和小数部分,再进行二进制至十进制转换计算。

z附数据包说明:

55 55 17 02 18 ---

15 ---状态码

00 ---故障码

00 00 00 00 ---工况瞬时流量=0

00 00 00 00 ---标况瞬时流量=0

05 50 00 00 ---温度=0.10100 000000000000000000×2∧0101=20

07 65 4C CC ---压力=0.1100101 0100110011001100×2∧0111=101.29998779

16 72 82 4A 49 25 ---累计量=0.1110010100000100100101 00100100100100101×2∧10110

=3752229.1428604125

E1 ---校验和

MODBUS通讯协议及编程

通讯协议及编程 通讯协议分为协议和协议,我公司的多种仪表都采用通讯协议,如:2000智能电力监测仪、巡检表、数显表、光柱数显表等。下面就协议简要介绍如下: 一、通讯协议 (一)、通讯传送方式: 通讯传送分为独立的信息头,和发送的编码数据。以下的通讯传送方式定义也与通讯规约相兼容: 初始结构= ≥4字节的时间 地址码 = 1 字节 功能码 = 1 字节 数据区 = N 字节 错误校检 = 16位码 结束结构= ≥4字节的时间 地址码:地址码为通讯传送的第一个字节。这个字节表明由用户设定地址码的从机将接收由主机发送来的信息。并且每个从机都有具有唯一的地址码,并且响应回送均以各自的地址码开始。主机发送的地址码表明将发送到的从机地址,而从机发送的地址码表明回送的从机地址。 功能码:通讯传送的第二个字节。通讯规约定义功能号为1到127。本仪表只利用其中的一部分功能码。作为主机请求发送,通过功能码告诉从机执行什么动作。作为从机响应,从机发送的功能码与从主机发送来的功能码一样,并表明从机已响应主机进行操作。如果从机发送的功能码的最高位为1(比如功能码大与此同时127),则表明从机没有响应操作或发送出错。 数据区:数据区是根据不同的功能码而不同。数据区可以是实际数值、设置点、主机发送给从机或从机发送给主机的地址。 码:二字节的错误检测码。 (二)、通讯规约: 当通讯命令发送至仪器时,符合相应地址码的设备接通讯命令,并除去地址码,读取信息,如果没有出错,则执行相应的任务;然后把执行结果返送给发送者。返送的信息

中包括地址码、执行动作的功能码、执行动作后结果的数据以及错误校验码。如果出错就不发送任何信息。 1.信息帧结构 地址码:地址码是信息帧的第一字节(8位),从0到255。这个字节表明由用户设置地址的从机将接收由主机发送来的信息。每个从机都必须有唯一的地址码,并且只有符合地址码的从机才能响应回送。当从机回送信息时,相当的地址码表明该信息来自于何处。 功能码:主机发送的功能码告诉从机执行什么任务。表1-1列出的功能码都有具体的含义及操作。 数据区:数据区包含需要从机执行什么动作或由从机采集的返送信息。这些信息可以是数值、参考地址等等。例如,功能码告诉从机读取寄存器的值,则数据区必需包含要读取寄存器的起始地址及读取长度。对于不同的从机,地址和数据信息都不相同。 错误校验码:主机或从机可用校验码进行判别接收信息是否出错。有时,由于电子噪声或其它一些干扰,信息在传输过程中会发生细微的变化,错误校验码保证了主机或从机对在传送过程中出错的信息不起作用。这样增加了系统的安全和效率。错误校验采用16校验方法。 注:信息帧的格式都基本相同:地址码、功能码、数据区和错误校验码。 2.错误校验 冗余循环码()包含2个字节,即16位二进制。码由发送设备计算,放置于发送信息的尾部。接收信息的设备再重新计算接收到信息的码,比较计算得到的码是否与接收到的相符,如果两者不相符,则表明出错。 码的计算方法是,先预置16位寄存器全为1。再逐步把每8位数据信息进行处理。在进行码计算时只用8位数据位,起始位及停止位,如有奇偶校验位的话也包括奇偶校验位,都不参与码计算。 在计算码时,8位数据与寄存器的数据相异或,得到的结果向低位移一字节,用0 填补最高位。再检查最低位,如果最低位为1,把寄存器的内容与预置数相异或,如果最低位为0,不进行异或运算。 这个过程一直重复8次。第8次移位后,下一个8位再与现在寄存器的内容相相异或,这个过程与以上一样重复8次。当所有的数据信息处理完后,最后寄存器的内容即为码值。码中的数据发送、接收时低字节在前。 计算码的步骤为:

超声波气体流量计基本原理介绍

超声波气体流量计基本原理介绍 超声波流量计一般可分为两大类:传播时间式超声波流量计和多普勒超声波流量计。在含有悬浮粒子的流动流体中,可以利用声学多普勒效应测量多普勒频移来确定媒质流速v,这种方法称为超声波多普勒法。 因为目前市场上的超声气体流量计产品都是传播时间式超声波流量计,所以下文将重点阐述传播时间式超声波流量计的原理。当超声波在流动的媒质中传播时,相对于固定坐标系统,超声波速度与在静止媒质中的传播速度有所不同,其变化值与媒质流速有关。因此根据超声波速度的变化量可以求出媒质的流速,传播时间式超声波流量计就是根据这一原理设计而成的。超声波流量计由两大部分组成:测量变换器部分和电子电路部分。 测量变换器又称为换能器,包括超声波发射器、接收器、声楔以及相应的机械连接组件等。 电子电路包括超声波的发射、接收电路,信号处理电路,流量数据指示或输出电路等。 超声波传播时间法测量流量的原理 时差法是通过测量超声波脉冲顺流和逆流的传播时间差来得到媒质流速的一种方法。参看图1-1,在管道两侧分别装置有两个收发通用型超声波换能器R 和T,管道中的媒质以速度u向前流动。

Fig.1-1管道内流速断面和超声射线的轨迹 图中的两个换能器在发射、接收状态交替工作,当T 发射R 接收时称为顺流发射状态,反之,R 发射T 接收时称为逆流发射状态。设顺流发射时超声脉冲的传播时间为1t ,而逆流发射时超声脉冲的传播时间为2t ,则有 ???????+-=++=τθθτθθcos sin /cos sin /2221u c D t u c D t (1-1) 式中,u 为管道中媒质流速,2c 为超声波在静止媒质中的声速,e c l ττ+=1 12;这里1l 为声楔(O-P)或(B-C)之长度,1c 为超声波在管壁中的声速,1 1c l 为超声脉冲通过声楔的时间,e τ为电路延迟时间。 考虑到一般情况下22c >>2u ,根据1-1式可以得到流速的计算公式: ???? ??-???????+=1222 112sin sin 1t t D c D u θθτ (1-2) 根据1-2式可以得出管道内流体中的声速的计算公式:

modbus_通讯协议_实例

上海安标电子有限公司 ——PC39A接地电阻仪通信协议 通信协议: 波特率:9600数据位:8校验位:无停止位:1 上位机(计算机): 字节号 1 2 3 4 5 6 7 8 意义ID Command 数据地址V alue CRC 注:1 ID:1个字节,由单机来定(0~255) 2 Command:1个字节,读:3或4,写:6 3 数据地址:2个字节,寄存器地址,读从100开始,写从200开始 4 V alue:2个字节,读:个数(以整型为单位),写:命令/ 数据(以整型为单位) 5 CRC:计算出CRC 下位机(PC39A): 读数据,若正确 字节号 1 2 3 3+N (N=个数*2) 3+N+1 3+N+2 意义ID Command=3 / 4 数据个数数据CRC 注:1 ID:1个字节,由单机来定(0~255) 2 Command:1个字节,收到的上位机命令 3数据个数:1个字节,返回数据个数(以字节为单位) 4 V alue:N个字节,是返回上位机的数据 5 CRC:计算出CRC 写命令,若正确 返回收到的数据: 若错误 字节号 1 2 3 4 5 意义ID Command 数据CRC 注:1 ID:1个字节,由单机来定(0~255) 2 Command:1个字节,收到的上位机命令或上0x80, 如收到3,返回0x83 3数据:1个字节,错误的指令 错误指令 1:表示command不存在 2:表示数据地址超限 4 CRC:计算出CRC

例如读PC39A 电流数据: 机器地址为12,电流的数据地址100,数据为15.45(A) (一个整型数据) 主机: ID Command 数据地址 V alue CRC 16进制 0x0c 0x03 0x0064 0x0001 CRC_H CRC_L 10进制 12 3 100 1 CRC_H CRC_L 从机返回 如正确: ID Command 数据个数(以字节为单位) V alue CRC 16进制 0x0c 0x03 0x002 0x0609 CRC_H CRC_L 10进制 12 3 2 1545 CRC_H CRC_L 如错误: ID Command 数据 CRC 16进制 0x0c 0x83 0x02 CRC_H CRC_L 10进制 12 131 2 CRC_H CRC_L 例如发PC39A 启动命令: 机器地址为12,命令的地址200,数据为25000(25000表示启动) 主机: ID Command 数据地址 V alue CRC 16进制 0x0c 0x06 0x00c8 0x61a8 CRC_H CRC_L 10进制 12 6 200 25000 CRC_H CRC_L 从机返回 如正确: ID Command 数据地址 V alue CRC 16进制 0x0c 0x06 0x00c8 0x61a8 CRC_H CRC_L 10进制 12 6 200 25000 CRC_H CRC_L 如错误: ID Command 数据 CRC 16进制 0x0c 0x86 0x02 CRC_H CRC_L 10进制 12 134 2 CRC_H CRC_L 0011 10000110 错误码0x83 功能码0x06错误码0x86

超声波流量计的应用

淮安嘉可自动化仪表有限公司 超声波流量计的应用 现阶段,我国流量测量技术的发展越来越快,各种先进的流量仪表也已经有效地应用于工业生产当中,但是不同的流量仪表其使用性能具有一定的差异性,适用范围也各不相同,而超声波流量计则可以广泛地应用于各类场合,并且适用于农业、污水处理等多个领域。 1、超声波流量计工作原理 在流体传播过程中,超声脉冲的速度一般会和流体速度有着密切的联系,也就是顺流速度大于逆流速度,脉冲传播如果存在较大的时间差,其流量也会随之增大。因此,才可以进行流量测量。在进行操作时,无论是上游还是下游的传感器,都会发射出一定的超声波脉冲,但是二者有所不同,主要表现为一个为逆流,而另一个为顺流。受到流体影响,两束脉冲到达换能器的时间也会具有一定的差异性。但是因为二者实际路径一致,所以传输时间的差异也可以表现出流体的实际流速。应用时差法进行测量时,需要将两个传感器用于发射和接收信号。将传感器设置在管线时,二者会实施声信号通讯,在进行工作时,则会进行发射和接收。如果管内流体处于静止状态,则顺流、逆流的传播时间保持一致。如果液体处于流动状态,则顺流信号进行传播时,时间会低于逆流。在此过程中,顺流、逆流进行传播时,其时间差和实际流速呈现为正比状态。 2、超声波流量计特点

淮安嘉可自动化仪表有限公司 在使用超声波流量计时,无需进行接触,同时在流体中没有阻碍件存在,不会对流束产生任何影响,同时也不会造成任何压力损失,能够有效的应用于不同的流体,尤其是黏度较高、腐蚀性较强的流量。除此之外,超声波流量计也可以有效的应用于气体流量,针对大口径流量进行测量时具有良好的优势特征。但该流量计也存在着缺点,在其对流体温度进行测量时,容易受到耦合材料的影响。除此之外,超声波流量计在进行实际测量时,其线路十分复杂。

Modbus 通讯协议的原理和标准

Modbus 通讯协议的原理和标准 工业控制已从单机控制走向集中监控、集散控制,如今已进入网络时代,工业控制器连网也为网络管理提供了方便。Modbus 就是工业控制器的网络协议中的一种。 一、Modbus 协议简介 Modbus 协议是应用于电子控制器上的一种通用语言。通过此协议,控制器相互之间、控制器经由网络(例如以太网)和其它设备之间可以通信。它已经成为一通用工业标准。有了它,不同厂商生产的控制设备可以连成工业网络,进行集中监控。此协议定义了一个控制器能认识使用的消息结构,而不管它们是经过何种网络进行通信的。它描述了一控制器请求访问其它设备的过程,如果回应来自其它设备的请求,以及怎样侦测错误并记录。它制定了消息域格局和内容的公共格式。 当在一Modbus 网络上通信时,此协议决定了每个控制器须要知道它们的设备地址,识别按地址发来的消息,决定要产生何种行动。如果需要回应,控制器将生成反馈信息并用Modbus 协议发出。在其它网络上,包含了Modbus 协议的消息转换为在此网络上使用的帧或包结构。这种转换也扩展了根据具体的网络解决节地址、路由路径及错误检测的方法。 1、在Modbus 网络上转输 标准的Modbus 口是使用一RS-232C 兼容串行接口,它定义了连接口的针脚、电缆、信号位、传输波特率、奇偶校验。控制器能直接或经由Modem 组网。 控制器通信使用主—从技术,即仅一设备(主设备)能初始化传输(查询)。其它设备(从设备)根据主设备查询提供的数据做出相应反应。典型的主设备:主机和可编程仪表。典型的从设备:可编程控制器。 主设备可单独和从设备通信,也能以广播方式和所有从设备通信。如果单独通信,从设备返回一消息作为回应,如果是以广播方式查询的,则不作任何回应。Modbus 协议建立了主设备查询的格式:设备(或广播)地址、功能代码、所有要发送的数据、一错误检测域。 从设备回应消息也由Modbus 协议构成,包括确认要行动的域、任何要返回的数据、和一错误检测域。如果在消息接收过程中发生一错误,或从设备不能执行其命令,从设备将建立一错误消息并把它作为回应发送出去。 2、在其它类型网络上转输 在其它网络上,控制器使用对等技术通信,故任何控制都能初始和其它控制器的通信。这样在单独的通信过程中,控制器既可作为主设备也可作为从设备。提供的多个内部通道可允许同时发生的传输进程。 在消息位,Modbus 协议仍提供了主—从原则,尽管网络通信方法是“对等”。如果一控制器发送一消息,它只是作为主设备,并期望从从设备得到回应。同样,当控制器接收到一消息,它将建立一从设备回应格式并返回给发送的控制器。 3、查询—回应周期 (1)查询 查询消息中的功能代码告之被选中的从设备要执行何种功能。数据段包含了从设备要执行功能的任何附加信息。例如功能代码03 是要求从设备读保持寄存器并返回它们的内容。数据段必须包含要告之从设备的信息:从何寄存器开始读及要读的寄存器数量。错误检测域为从设备提供了一种验证消息内容是否正确的方法。

超声波流量计原理及应用

超声波流量计原理及应用 超声波流量计原理及应用 吐尔逊古丽 (独山子石化公司炼油厂仪表车间新疆独山子833600 ) 摘要:超声波流量计广泛应用于我厂各生产装置,其检测的介质有水、烃类、碱液等。我厂采用的超声波流量计有国产、国外的多种型号和规格。和传统的机械式流量仪表、电磁式流量仪表相比它的计量精度高、对管径的适应性强、非接触流体、使用方便、易于数字化管理等等。文章讨论了利用超声波流量计测量液体流量的有关问题,重点阐明了超声波流量计的测量原理、分类,安装、使用。

一.超声波流量计原理: 超声波流量计广泛应用于我厂各生产装置,其检测的介质有水、烃类、碱液等。我厂采用的超声波流量计有国产、国外的多种型号和规格。 超声波在流动的流体中传播时就载上流体流速的信息。因此通过接收到的超声 波就可以检 测出流体的流速,从而换算成流量。它与水位计联动可进行敞开水流的流量测量。使用超声波流量比不用在流体中安装测量元件故不会改变流体的流动状态,不产生附加阻力,仪表的安装及检修均可不影响生产管线运行因而是一种理想的节能型流量计。 超声波流量计由超声波换能器、电子线路及流量显示和累积系统三部分组成。超声波发射换能器将电能转换为超声波能量,并将其发射到被测流体中,接收器接收到的超声波信号,经电子线路放大并转换为代表流量的电信号供给显示和积算仪表进行显示和积算。这样就实现了流量的检测和显示。

另外,超声测量仪表的流量测量准确度几乎不受被测流体温度、压力、粘度、密度等参数的影响,又可制成非接触及便携式测量仪表,故可解决其它类型仪表所难以测量的强腐蚀性、非导电性、放射性及易燃易爆介质的流量测量问题。 超声波流量计的电子线路包括发射、接收、信号处理和显示电路。测得的瞬时流量和累积流量值用数字量或模拟量显示。 二、超声波流量计特点: 优点:它是一种非接触式流量测量仪表,可测量液体、气体介质的体积流量,除具有电磁流量计的优点(无压力损失、不干扰流场、能测量强腐蚀性介质、含杂质污物的介质等)夕卜,还可测量非导电介质的流量,而且不受流体压力、温度、粘度、密度的影响;通用性好,同一台表可测不同口径的管道内的介质流量;安装维修方便,不需要切断流体,不影响管道内流体的正常流通。安装时不需要阀门、法兰、旁通管等;特别适用于大口径管道的流量测量,由于没有压力损失,节能效果显著。 缺点:安装时不能离震动原太近,容易影响探头的测量;在测量水的流量时, 由于水常时间在管道中容易产生水垢,对探头信号强度有影响;还不能测量悬浮. 三?超声波的分类 超声波在流动的流体中传播时就载上流体流速的信息。因此通过接收到的超声波就可以检测出流体的流速,从而换算成流量。根据检测的方式,可分为传播速度差法、多普勒法、波束偏移法、噪声法及相关法等不同类型的超声波流量计。超声波流量计的各类很多,依照不同的分类方法,可以分为不同类型的超声波流量计。除了

气体超声波流量计ELSTER

埃尔斯特超声波流量计介绍
题 目:超声波流量计的介绍、应用及最新技术
姓名
奉 新


超声流量计的定义
国标GB/T 18604: 利用超声在流体中的传播特性来测量流量的流量计。超 声流量计通常由1个或多个超声换能器和设备组成,根据 他们所产生或接收到的超声信号推导出流量测量值并把 该信号转换为正比于流量标准化输出信号。在流动气体 内的相同行程内,用顺流和逆流传播的2个超声信号的传 播时间差来确定沿声道的气体平均流速所进行的气体流 量测量方法称之为传播时间法。
奉 新

2

超声波流量计的国际和中国标准和规范 ? ? ? ? ? ? ? ? ? ISO17089 AGA Report No.9 EN 14236 OIML R137 GB/T 18604 GB/T 18604修订版 AGA 10 – 声速比对 JJG 1030-2007 超声波流量计检定规范 行业标准和企业标准
奉 新

3

超声波流量计优点
? 精度高(0.3%-0.5%),重复性高, ? 量程比很宽1:40-1:200,流速范围:0.2-30 m/s ? 可测量双向流 ,可精确测定脉动流 ? 无压损,对压力的很大变化不敏感 ? 对沉积物不敏感,无可动部件,免维护 ? 重量轻,占用空间少 ? 不存在磨损,无示值漂移现象 ? 可带压更换传感器,且更换后无需重新标定 ? 具自诊断功能(AGC-level;AGC-limit;采样率;接收率) ? 对上下游直管段要求较短
奉 新

4

超声波流量计原理

1引言 近几年来,随着电子技术、数字技术和声楔材料等技术的发展,利用超声波脉冲测量流体流量的技术发展很快。基于不同原理,适用于不同场合的各种形式的超声波流量计已相继出现,其应用领域涉及到工农业、水利、水电等部门,正日趋成为测流工作的首选工具。 2超声波流量计的测量原理 超声波流量计常用的测量方法为传播速度差法、多普勒法等。传播速度差法又包括直接时差法、相差法和频差法。其基本原理都是测量超声波脉冲顺水流和逆水流时速度之差来反映流体的流速,从而测出流量;多普勒法的基本原理则是应用声波中的多普勒效应测得顺水流和逆水流的频差来反映流体的流速从而得出流量。 2.1时差法测量原理 时差法测量流体流量的原理如图1所示。它利用声波在流体中传播时因流体流动方向不同而传播速度不同的特点,测量它的顺流传播时间t1和逆流传播时间t2的差值,从而计算流体流动的速度和流量。 图1超声波流量计测流原理图 设静止流体中声速为c,流体流动速度为v,把一组换能器P1、P2与管渠轴线安装成θ角,换能器的距离为L。从P1到P2顺流发射时,声波传播时间t1为: 从P2到P1逆流发射时,声波的传播时间t2为:

一般c>>v,则时差为: 单声道测试系统只适用于小型渠道水位和流速变化不大的场合。大型渠道水面宽、水深大,其流速纵横变化也较大,须采用多声道超声波测流才能获得准确的流量值,见图2。应用公式(5)、(6)可测得流量Q。 以上各式中:d为垂直于水流方向上两换能器之间水平投影的距离,为声道数,S为两声道之间的过水断面面积。 图2多声道超声波流量计测流原理图 2.2多普勒法测量原理 多普勒法测量原理,是依据声波中的多普勒效应,检测其多普勒频率差。超声波发生器为一固定声源,随流体以同速度运动的固体颗粒与声源有相对运动,该固体颗粒可把入射的超声波反射回接收器。入射声波与反射声波之间的频率差就是由于流体中固体颗粒运动而产生的声波多普勒频移。由于这个频率差正比于流体流速,所以通过测量频率差就可以求得流速,进而可以得到流体流量,如图3。

超声波流量计的研究与应用

超声波流量计的研究与应用 发表时间:2017-11-24T14:18:34.903Z 来源:《防护工程》2017年第17期作者:宋皎 [导读] 超声波流量计是近十几年来随着集成电路技术的发展才出现的一种非接触式仪表。 南京钢铁股份有限公司江苏南京 210031 摘要:超声波流量计属于一种应用在体积流量测试方面的设备。其具有几个方面的特点,设备并不需要插入到任何被测试流体之中,并不会对流体速度产生任何影响,更加不会影响流体压力,可以应用在任何液体之中,包括具有高粘度以及腐蚀性液体之中。非导电性等相关液体流量监测同样始终本流量计。基于上述中此类型优势,超声波流量计的实际发展进程较快,已经成为了当前最为常见的测试流量计类型。希望通过本研究能对未来超声波流量计的应用与发展提供借鉴和帮助。 关键词:超声波流量计;应用 引言 超声波流量计是近十几年来随着集成电路技术的发展才出现的一种非接触式仪表,适于测量不易接触、观察的流体以及大管径流量。使用超声波流量计,不用在流体中安装测量元件,故不会改变流体的流动状态,不产生附加阻力,仪表的安装及检修均可在不影响生产管线运行的情况下进行,因而是一种理想的节能型流量计。 1影响超声波流量计量准确性的主要因素 1.1噪音 水质输气站场中由于气流速度快,弯头、阀门等各类阻流管件的存在,会产生一定的噪声,在计量装置设计和安装的时候已经充分考虑。但是现场因为工况条件的变化,如流量、压力和温度等,压缩机不同功率下的噪声震动等不能预见的各类因素产生的噪声仍然使超声波流量计在现场使用过程中受到噪声的影响。超声波流量计对降压元件产生的噪声尤其敏感,甚至有些低噪声阀门比调压阀对超声波流量计产生的影响还要大,这是因为采用了低噪声技术的阀门将噪音频率调整至人耳听力不敏感的高频范围(20kHz)以上,该频率范围恰好与超声波流量计超声频率重合,对超声波流量计造成较大影响。 1.2水质杂质 水质流过超声波流量计时,水、硫化铁粉末等杂质逐渐堆积在流量计表体管道内或超声波探头上,都会影响超声波流量计的准确度,附着在超声波探头表面的杂质缩短了超声波在管道内的传输时间,影响了超声波探头的敏感性,同时由于杂质的附着,计量撬的上游直管段表面粗糙度变化或整流板堵塞引起气体流态发生变化,从而影响流量计的准确度和稳定性。实验研究表明:脏污可对某些流量计流量输出带来0.3%或更大的偏差。 1.3气体组分 根据超声波流量计量系统工况流量与标况流量的转换公式可知,在水质贸易计量中需要利用压缩因子将水质的工况流量转换为标况流量,而工况下的压缩因子则需利用气体分析设备,如色谱分析仪等分析结果计算获得。气体组分检测是否准确及时,直接影响着超声波计量系统的计量准确性。在实际生产中,部分场站的气体分析设备未接入流量计算机,失去了气体分析设备的主要作用,同时在未配备气体分析设备的场站也存在着气体组分更新不及时现象,在多气源的计量站,影响更为明显。实验研究发现:由于输气干线组分变化造成超声流量计的标准参比条件下体积流量偏差最高可达0.6%。 2超声波流量计的应用 2.1多普勒法原则下的超声波流量计 多普勒法主要是一种应用了声学多普勒工作原理对流体实施测量的一种特殊方法。多普勒效应强调生源以及目标发生相对运动过程中,产生的频率上的改变情况。通过频率变化正比于运动目标和静止发射设备之间的相对速度完成判断。多谱勒式超声波流量计,只能用于测量含有适量能反射超声波信号的颗粒或气泡的流体。在确定超声波流量计的过程中,首先需要结合被测量流体实际情况与特质进行分析,完成初型判断,但是,涉及到所有厂家的多种技术特点,作为工程设计人员还应该进行综合判断,同时,还要考虑项目的统一性,价格因素等,最终选取合适的流量计类型。 2.2气体(时差)超声流量计 气体超声流量计是安装在流动气体管道上,通过检测气体流动时对超声束(或超声脉冲)的作用,以测量气体体积流量的仪表。随着我国长距离大口径输气管道的建设和发展,气体超声波流量计因其计量精度高、对管径的适应性强、非接触流体、使用方便、易于数字化管理等优于传统型流量计的特点,逐渐在我国水质管道计量中逐渐普及起来。 超声脉冲穿过管道如同渡船渡过河流。如果气体没有流动,声波将以相同速度向两个方向传播。当管道中的气体流速不为零时,沿气流方向顺流传播的脉冲将加快速度,而逆流传播的脉冲将减慢。因此,相对于没有气流的情况,顺流传播的时间t。将缩短,逆流传播的时间t。会增长,这两个传播时间都由电子部件进行测量。根据这两个传播时间,可以计算测得的流速。 超声波流量计的安装要求如下: (1)超声波流量计传感单元安装时需在管道停运状态完成,一般设计为两路支线分别切换进行安装; (2)测量仪表的传感单元尺寸必须与管输内外径相一,其误差应控制在±1%以内,以免安装产生偏差; (3)为了能够有效避免换能器声波表面受颗粒或空气干扰,超声波流量计传感单元最好选在与水平方向450的范围内安装,尽量避免干扰。此外,在水质含液较多的场合,气体超声波流量计及其计量管段的安装位置不应低于其上下游管道,使得水质中凝析出来的液体能够随气流被带走,不在气体超声波流量计处堆积,造成计量故障; (4)上下游应保证有必要的直管段,上游直管段最少10D,下游直管段至少为5D; (5)超声波流量计安装需要前后避开阻力构件如(弯头、阀门、变径处),如在垂直管道安装,其换能器的安装位需在上游弯管的弯轴平面内,以获得弯管流场畸变后较接近的平均值;

超声波气体流量计与孔板流量计的深度对比

超声波气体流量计与孔板流量计的深度对比 石油和天然气在我国能源构成中,始终处于主导地位,其运输方式仍然离不开长输和集输管道工程。在石油和天然气采集与运输过程中,孔板流量计,特别是高级孔板阀在其中处于绝对的统治地位。随着国内石油天然气事业的大规模发展,对于高压、大流量的计量的需求也旺盛起来,孔板流量计由于自身结构的限制其局限性就很明显了。 近来以来,一些新型的流量计也在国内市场崭露头角,并取得一系列成功经验。最值得一提的是超声波流量计在高压、大流量场合具有明显优势,大有取代高级孔板阀之势。下面,对比一下孔板流量计与超声气体波流量计之间的区别,一起来看看吧! 一、技术性能的比较 1.量程比 由于结构特点,孔板流量计是通过节流件来完成测量的,所以其量程比通常只有1:3,最高可达1:10,而超声波流量计没有任何阻流件,其量程比可达1:200。这两个数据表明:如果实现一种测量方案,假定其流量范围是从1m3/h~40m3/h,使用超声波气体流量计只需要一路工艺计量回路就可以实现,如果采用孔板流量计,需要多路才能实现。 2.压损 由于孔板流量计的结构有阻流件,超声波气体流量计没有阻流件,那么显而易见:孔板流量计的压损很大,超声波流气体量计压损实际可以忽略不计。 节流装置能耗计算如下: 以下以1个典型用户用气参数进行能耗计算:用气量160×104m3/d,用气压力0.6MPa。 节流装置压力损失计算式:(最大刻度差压50kPa、β=0.68) δP=(1-0.24β-0.52β2-0.16β3)ΔP =0.5486×50 =27.43kPa 节流装置能耗计算式:(压缩机效率η=0.8) W=δp×QV/η =27430×18.5185/0.8 =634953W

超声波流量计原理及应用

超声波流量计原理及应用

超声波流量计原理及应用 吐尔逊古丽 (独山子石化公司炼油厂仪表车间新疆独山子 833600 ) 摘要:超声波流量计广泛应用于我厂各生产装置,其检测的介质有水、烃类、碱液等。我厂采用的超声波流量计有国产、国外的多种型号和规格。和传统的机械式流量仪表、电磁式流量仪表相比它的计量精度高、对管径的适应性强、非接触流体、使用方便、易于数字化管理等等。文章讨论了利用超声波流量计测量液体流量的有关问题,重点阐明了超声波流量计的测量原理、分类,安装、使用。 一. 超声波流量计原理: 超声波流量计广泛应用于我厂各生产装置,其检测的介质有水、烃类、碱液等。 我厂采用的超声波流量计有国产、国外的多种型号和规格。 超声波在流动的流体中传播时就载上流体流速的信息。因此通过接收到的超声波就可以检 测出流体的流速,从而换算成流量。它与水位计联动可进行敞开水流的流量测量。使用超声波流量比不用在流体中安装测量元件故不会改变流体的流动状态,不产生附加阻力,仪表的安装及检修均可不影响生产管线运行因而是一种理想的节能型流量计。 超声波流量计由超声波换能器、电子线路及流量显示和累积系统三部分组成。超声波发射换能器将电能转换为超声波能量,并将其发射到被测流体中,接收器接收到的超声波信号,经电子线路放大并转换为代表流量的电信号供给显示和积算仪表进行显示和积算。这样就实现了流量的检测和显示。

按声道数目,按性能,根据使用场合不同等等。 目前通常采用两种类型的超声波流量计,一种为多普勒超声波流量计,另一类为时差式超声波流量计。多普勒型是利用相位差法测量流速,即某一已知频率的声波在流体中运动,由于液体本身有一运动速度,导致超声波在两接收器(或发射器)之间的频率或相位发生相对变化,通过测量这一相对变化就可获得液体速度;时差型是利用时间差法测量流速,即某一速度的声波由于流体流动而使得其在两接收器(或发射器)之间传播时间发生变化,通过测量这一相对变化就可获得流体流速。我厂多为采用的是时差式超声波流量计,下面简单介绍一下这两种类型超声波流量计,具体测量方法。 1.多谱勒式超声波流量计 换能器1发射频率为f 1 的超声波信号,经过管道内液体中的悬浮颗粒或气泡后,频率发生 偏移,以f 2 的频率反射到换能器2,这就是多谱 勒将就,f 2与f 1 之差即为多谱勒频差 f d 。设流体流速为v,超声波声速为c, 多谱勒频移f d 正比于流体流速v,即

modbus通讯协议

Modbus通讯协议 图片: 图片: 图片:

Modbus协议最初由Modicon公司开发出来,在1979年末该公司成为施耐德自动化(Schneider Automation)部门的一部分,现在Modbus已经是工业领域全球最流行的协议。此协议支持传统的RS-232、RS-422、RS-485和以太网设备。许多工业设备,包括PLC,DCS,智能仪表等都在使用Modbus协议作为他们之间的通讯标准。有了它,不同厂商生产的控制设备可以连成工业网络,进行集中监控。 当在网络上通信时,Modbus协议决定了每个控制器须要知道它们的设备地址,识别按地址发来的消息,决定要产生何种行动。如果需要回应,控制器将生成应答并使用Modbus协议发送给询问方。 Modbus协议包括ASCII、RTU、TCP等,并没有规定物理层。此协议定义了控制器能够认识和使用的消息结构,而不管它们是经过何种网络进行通信的。标准的Modicon控制器使用RS232C实现串行的Modbus。Modbus的ASCII、RTU协议规定了消息、数据的结构、命令和就答的方式,数据通讯采用Maser/Slave方式,Master 端发出数据请求消息,Slave端接收到正确消息后就可以发送数据到Master端以响应请求;Master端也可以直接发消息修改Slave端的数据,实现双向读写。

Modbus协议需要对数据进行校验,串行协议中除有奇偶校验外,ASCII模式采用LRC校验,RTU模式采用16位CRC校验,但TCP模式没有额外规定校验,因为TCP 协议是一个面向连接的可靠协议。另外,Modbus采用主从方式定时收发数据,在实际使用中如果某Slave站点断开后(如故障或关机),Master端可以诊断出来,而当故障修复后,网络又可自动接通。因此,Modbus协议的可靠性较好。 下面我来简单的给大家介绍一下,对于Modbus的ASCII、RTU和TCP协议来说,其中TCP和RTU协议非常类似,我们只要把RTU协议的两个字节的校验码去掉,然后在RTU协议的开始加上5个0和一个6并通过TCP/IP网络协议发送出去即可。所以在这里我仅介绍一下Modbus的ASCII和RTU协议。 下表是ASCII协议和RTU协议进行的比较: 通过比较可以看到,ASCII协议和RTU协议相比拥有开始和结束标记,因此在进行程序处理时能更加方便,而且由于传输的都是可见的ASCII字符,所以进行调试时就更加的直观,另外它的LRC校验也比较容易。但是因为它传输的都是可见的ASCII 字符,RTU传输的数据每一个字节ASCII都要用两个字节来传输,比如RTU传输一个十六进制数0xF9,ASCII就需要传输’F’’9’的ASCII码0x39和0x46两个字节,这样它的传输的效率就比较低。所以一般来说,如果所需要传输的数据量较小可以考虑使用ASCII协议,如果所需传输的数据量比较大,最好能使用RTU协议。

气体超声波流量计

气体超声波流量计─天然气流量计量的发展趋势 应用超声波原理测量流量始于1928年,而进入实用阶段约在20世纪70年代,但仍限于测量液体。用于测量气体流量约在90年代,至今不到10年。由于气体超声波流量计具有许多传统流量计(孔板、涡轮、涡街……等)无法相比的突出优点(见表1),在天然气流量计量领域中,它犹如一颗耀眼的新星,备受国内外工程技术界的关注。2000年6月在巴西召开的“FOLMEKO2000第十届流量测量国际学术讨论会”上,重点讨论了超声波流量计,该方面的论文数占论文总数的29.4%,接近1/3;而历届讨论最多的有关差压式的论文数仅占17.6%,不再成为热点。从发展趋势来看,由于超声波流量计具有精确度高、性能稳定可靠、量程比大、管道中无检测件等特点,在工程应用及国际贸易中,大有后来居上取代传统流量仪表的趋势。目前,美国、英国、荷兰、德国、加拿大、俄罗斯等10余个国家已批准它为天然气贸易输送系统的计量仪表。据了解,我国也正对此进行技术谁,制定了标准。仅以我国四大世纪工程之一的西气东输工程为例,经多次流量计量论证,已将气体超声波流量计作为流量计量的首选仪表。据估算,该项目一期工程对检测控制仪表的投资将达到100亿元左右。流量计量是整个工程中重要的检测参数,初步估计,管道为DN150~1000的大中型天然气输配计量站约数百个,DN100以下的流量计量所需仪表将以万计,流量计量投资约10亿元左右。这个巨大的市场对于仪表生产厂商来说,真是千载难逢!

表1 流量计的性能比较 二原理 1.流速测量 目前用超声波法来测气体流量,时差法几乎是唯一的选择。 其测量原理如图1所示,A、B是安装在管道上的两个换能器(Transducer),既可发射又可接受超声波。A牌上游,B牌下游,两者轴向距离为X,声道长度为L。从A向B发出的超声波顺流向到达B所需时间:

Modbus 通讯协议简化V1.0(含具体说明).

Modbus通讯协议简化 V1.0 2004-5-21 1 Modbus协议概述 Modbus协议是主从站通讯协议,用异步串行口完成通讯,物理层采用RS485或RS232。传输速率可以达到115kbps,理论上可接(寻址)一台主站和至多247台从站。受线路和设备的限制,最多可接一台主站和32台从站。 Modbus理,以及所执行的功能等,都不能随便改动。其他特性属于用户可选的,如传输介质、波特率、字符奇偶校验、停止位的个数等等,传输模式为RTU。用户所选择的参数对于各个站必须一致,在系统运行时不能改变。 1.1 Modbus协议传输模式 Modbus的传输模式:RTU方式。 表1-1 RTU传输模式的特性 特性编码系统 每个字符的位数起始位 数据位 奇偶校验位 停止位 1.2 帧 Modbus协议的帧(报文)格式:RTU帧。 下表是RTU传输模式的一般格式命令帧。 从站地址 8位 2 Modbus协议 2.1 通讯方式 Modbus有两种通讯方式:应答方式和广播方式。 应答方式是主站向某个从站(地址1~247)发出命令,然后等待从站的应答;从站接到主站命令后,执行命令,并将执行结果返回给主站作为应答,然后等待下一个命令。 广播方式是主站向所有从站发送命令(从站地址为0),不需要等待从站应答;从站接到广播命令后,执行命令,也不向主站应答。 除了会送诊断校验外,只有05、06、15、16这四项功能(见2.3)对广播方式有效。功能码数据校验和 8位位位十六进制 1位 8位 0或1位 1或2位校验和(循环冗余校验) 2.2 Modbus帧

Modbus的帧按应答方式分为命令帧(询问帧)和应答帧。命令帧为一般格式命令帧,应答帧有显长度帧和隐长度帧之分,图2-1、2-3、2-4给出了典型的帧格式。从站地址 功能码 数据 数据起始寄存器高位 数据起始寄存器地位 数据寄存器高位 数据寄存器地位 校验和 图2-1 一般格式命令帧 从站地址 从站地址 2.2.1 功能码 从站地址字段 数据 图2-4 隐长度应答帧 帧中的从站地址字段表示接收主站报文的从站地址。当从站地址字段为0时,表示所有从站,此时的报文是广播报文。 用户必须设定每台从站的专用地址。只有被编址的设备才能对主机的命令(询问)做出应答。从站发送应答报文时,报文中地址的作用是向主站报告正在通讯的是哪台从站。 2.2.2 功能码字段 功能码字段同志从站应执行何种功能。表2-1列出了功能码的意义和作用。2.3节给出了各个功能码对应报文的详细格式和功能。表2-1 Modbus功能码 功能码 01 02 03 04 05 06 07 08 09 10 11 12 名称 读取开出状态读取开入状态读取模出状态读取模入状态强制单路开出强制单路模出读取异常状态回送诊断校验编程探询读取事件计数读取通讯事件记录 作用(对主站而言) 取得一组开关量输出的当前状态取得一组开关量输入的当前状态取得一组模拟量输出的当前状态取得一组模拟量输入的当前状态强制设定某个开关量输出的值强制设定某个模拟量输出的值取得从站的一些状态(8位)

超声波流量计原理及应用

超声波流量计原理及应用 前言超声流量计(以下简称USF)是通过检测流体流动时对超声束(或超声脉冲)的作用,以测量体积流量的仪表。本文主要讨论用于测量封闭管道液体流量的USF。 20世纪70年代随着电子技术的发展,性能日益完善的各种型号USF投入市场。有人预言由于USF测量原理是长度与时间两个基本量的结合,其导出量溯源性较好,有可能据此建立流量基准。 第一节工作原理 封闭管道用USF按测量原理分类有: ①传播时间法; ②多普勒效应法; ③波束偏移法; ④相关法; ⑤噪声法。 本文将讨论用得最多的传播时间法和多普勒效应法的仪表。 1.1传播时间法 声波在流体中传播,顺流方向声波传播速度会增大,逆流方向则减小,同一传播距离就有不同的传播时间。利用传播速度之差与被测流体流速之关系求取流速,称之传播时间法。按测量具体参数不同,分为时差法、相位差法和频差法。现以时差法阐明工作原理。 (1)流速方程式 如图1所示,超声波逆流从换能器1送到换能器2的传播速度c被流体流速Vm所减慢,为:

(1) 反之,超声波顺流从换能器2传送到换能器1的传播速度则被流体流速加快,为: (2) 式(1)减式(2),并变换之,得 (3) 式中L——超声波在换能器之间传播路径的长度,m; X——传播路径的轴向分量,m; t12、t21——从换能器1到换能器2和从换能器2到换能器1的传播时间,s; c——超声波在静止流体中的传播速度,m/s; Vm——流体通过换能器1、2之间声道上平均流速,m/s。 时(间)差法与频(率)差法和相差法间原理方程式的基本关系为: (4) (5) 式中f——频率差; φ——相位差; f21,f12——超声波在流体中的顺流和逆流的传播频率; f——超声波的频率。 从中可以看出,相位差法本质上和时差法是相同的,而频率与时间有时互为倒数关系,三种方法没有本质上的差别。目前相位差法已不采用,频差法的仪表也不多。 (2)流量方程式 传播时间法所测量和计算的流速是声道上的线平均流速,而计算流量所需是流通横截面的面平均流速,二者的数值是不同的,其差异取决于流速分布状况。因此,必须用一定的方法对流速分布进行补偿。此外,对于夹装式换能器仪表,还必须对折射角受温度变化进行补偿,才能精确的测得流量。体积流量qv为

MODBUS_RTU通讯协议

百特工控 福州福光百特自动化设备有限公司MODBUS通讯协议 使用手册

1. RTU 方式通讯协议 1.1. 硬件采用RS -485,主从式半双工通讯,主机呼叫从机地址,从机应答方式通讯。 1. 2. 数据帧10位,1个起始位,8个数据位,1个停止位,无校验。 波特率:9600;19200 38400 1.3. 功能码03H : 读寄存器值 主机发送: 第1字节 ADR : 从机地址码(=001~254) 第2字节 03H : 读寄存器值功能码 第3、4字节 : 要读的寄存器开始地址 要读FCC 下挂仪表, 第5、6字节 : 要读的寄存器数量 第7、8字节 : 从字节1到6的CRC16校验和 从机回送: 第1字节 ADR : 从机地址码(=001~254) 第2字节 03H : 返回读功能码 第3字节 : 从4到M (包括4及M )的字节总数 第4到M 字节 : 寄存器数据 第M +1、M+2字节 : 从字节1到M 的CRC16校验和 当从机接收错误时,从机回送: 第1字节 ADR : 从机地址码(=001~254) 第2字节 83H : 读寄存器值出错 第3字节 信息码 : 见信息码表 第4、5字节 : 从字节1到3的CRC16校验和 1.4. 功能码06H : 写单个寄存器值 主机发送:

当从机接收正确时,从机回送: 当从机接收错误时,从机回送: 第1字节 ADR :从机地址码(=001~254) 第2字节 86H :写寄存器值出错功能码 第3字节 错误数息码 : 见信息码表 第4、 5字节 : 从字节1到3的CRC16校验和 1.5. 功能码10H : 连续写多个寄存器值 当从机接收正确时,从机回送: 当从机接收错误时,从机回送: 第1字节 ADR : 从机地址码(=001~254) 第2字节 90H : 写寄存器值出错 第3字节 错误信息码 : 见信息码表 第4、5字节 : 从字节1到3的CRC16校验和

超声波流量计选型及应用

随着物联网相关技术的逐渐成熟,智能硬件以及自动化技术的应用必将会越来越广泛,我们将积极推广自动化技术在水处理水资源水环境、智能制造、智慧交通、智慧城市、智慧楼宇等行业的应用。 超声波流量计是采用高集成度FPGA芯片及低电压宽脉冲发射技术设计的一种通用时差型超声波液量计,适用于水的测量。 超声波流量计选型: 1、对主机类型的要求:一体式(带本地操作),分体壁挂型,分体壁挂防爆型,分体盘装型,分体本地显示型,模块型(带本地操作),水表(电池供电,磁性按键可浏览窗口),手持型,便携性; 2、对工作单元的要求:交流(85~264V),电池(3.6V锂电池),直流(24VDC/8-36VDC) 3、对热量功能有无要求:有,无 4、对传感器类型的要求:标准S1型;标准M1型,标准L1型,高温S1H 型,高温M1H型;高温L1H型,标准插入式,水泥插入式,水表插入式,大型加长型,超大型水表插入式,管段式(法兰连接,DN40以下可选螺纹连接),管段式(活接连接,卫生型) 5、对管径的要求:测量范围管径的大小

6、对管材的要求:碳钢,不锈钢,铸铁,玻璃钢,PVC,水泥 7、对公称压力的要求:常规1.6Mpa(管道式) 8、对输出信号的要求:无输出,4-20mA输出(注明量程及有源或无源),脉冲输出,OCT输出,频率输出,RS485输出(请注明皮特率、通讯效验位等) 9、对信号输入的要求:无输入,1路4-20mA模拟输入,2路4-20mA模拟输入,3路4-20mA模拟输入 10、对电缆线长度要求:米 产品具体选型,需要按照客户提供的参数来选择。 例如: 客户提供以下要求:测量介质:水;传感器类型:常温外夹式传感器;工作温度:0℃~+50℃;适用管道口径:DN25-DN800mm;供电:DC24V;输出:4-20mA,RS485通讯,脉冲输出;精度:1.0%; 显示类型:LCD液晶显示瞬时流量、流速和累计流量等。包含:壁挂式主机和外夹式传感器一套,标配线缆长度9米,配开关电源一只。 我们可这样选型:AFTU-2WXXX 超声波流量应用范围 超声波流量计广泛应用于超声波流量计广泛应用于石油、化工、冶金、电力、给排水等领域。

相关主题