当前位置:文档之家› 电子束流能量测量

电子束流能量测量

直线加速器电子束流能量的测量电子直线加速器最重要的束流参数是束流的能量、流强、能散度和发射度束流能量是影响电子直线加速器性能最重要的因素之一对于脉冲型电子直线加速器,电子束的能量测量方法通常有:磁偏转法、半价层法、射程法等一测量原理1.1磁偏转法能谱测量原理示意图磁偏转法通常用于测量电子束的能谱,进而得出电子束的能量E0。

磁偏转法测量电子束能谱的原理如上图所示:从加速器引出的电子垂直于磁场射,会受到洛伦兹力的作用而发生偏转,其偏转半径为R,磁场B 与偏转半径的关系为:其中,B 为磁场中的磁感应强度,e 为电子电量,R 为回旋半径,v 为电子运动速度。

考虑相对论效应,可以将上式写为:其中β=v/c,c 为光速,γ 为相对论因子,γ 与β 满足关系:电子的动能为:由上述几个公式可以求得电子能量E 与磁感应强度B的关系为:因此,对于已知磁场B,理论上只需要测出电子的回旋半径R,即可进一步算出电子的能量。

为提高测试精度,在电子进入磁分析器之前,需要对其进行准直。

通常采用带狭缝的石墨块,其厚度略大于电子在其中的射程;设准直缝距磁极边缘为L,此即分析器的物点O由于从加速器引出的电子能量具有一定的能散ΔE,因此,对于流强较大的电子束,常用的方法是采用扫描的工作方式,在位置J 处放置一个法拉第筒用于接收电子,使偏转半径为R 的电子能够被接收,通过改变磁场B 使不同能量的电子都被法拉第筒接收,得到一条B-I 曲线,由于B 与能量存在公式所示的定量关系,因此通常直接做出E-I 曲线,即能谱分布曲线,如下图所示的是一条能谱分布曲线,其中纵坐标表示归一化电流,横坐标为能量。

采用磁分析法得到的能谱分布曲线其中峰值处的横坐标值即对应电子束的能量E01.2 半价层法加速器加速电子打靶所产生的X 射线本质上是具有相当能量的电磁辐射光子,光子的能量近似等于入射电子的能量,因此可以通过测量光子能量的方法间接得到电子能量。

辐射光子流在物质中的衰减规律服从简单的指数关系如下:式中:I0、I 分别表示穿过物质前、后光子流强度;μ 是X 射线在该物质中的衰减系数;x 是物质层的厚度。

半价层是指X 射线的剂量减弱到一半时所穿透的物质的厚度。

由这个厚度,可以从表中查到相应的能量。

半价层的值x 可由以下过程确定:上述方程组作变换可得两式两边同时取以10 为底的对数,得两式相除可得:x-x1 即为半价层厚度,由半价层厚度就可判断X 射线的能量。

由公式可以看出,只要测出X 射线经过不同厚度的阻挡物之后的强度,就可以算出相应的半价层,从而得到X 射线的能量。

根据NCRP51 号报告中的曲线可以算出不同能量的X 射线在几种物质中的半价层列于下图不同能量的X 射线在几种物质中的半价层下图所示为半价层法测量能量的装置示意图半价层法测量束流能量装置示意图1.3 射程法绝对地测量电子束的能量是比较复杂的,而且需要特殊的设备。

实际中通常采用测量电子束在密度均匀物质中的射程R p 来确定其能量。

电子的实际射程R p 定义为:深度剂量分布曲线(如下图)的直线下降部分的外推线和轫致辐射所产生的本底的外推线的交点处的深度。

(1.0~5.0)MeV 平行单能电子垂直入射聚苯乙烯得到的深度剂量分布曲线测量深度剂量分布曲线需要与薄膜剂量测量系统结合,用剂量片测量参考材料不同深度处的剂量,除了铝以外,聚乙烯、聚苯乙烯、石墨、聚甲基丙烯酸甲酯以及尼龙等低密度材料可用作模体材料。

常用吸收模体有叠层和楔子这两种不同类型。

另一种获得R p 的常用方法是通过电流-厚度曲线的外推值得到。

实验表明,采用铝作为吸收材料,随着铝的厚度的改变,在铝下方接收到的电流大小与铝的厚度有如下图所示的关系,类似深度剂量曲线,它也有明显的直线段,该直线段的外推值所对应的铝的厚度就是电子束在铝中的射程R p。

得到射程值R p 即可代入适当的经验公式算出电子束的能量E p。

采用箔片测量到的射程曲线实际应用中电子束能量和其在物质中的实际射程之间已经建立起来的经验公式主要有以下几个(以下经验公式均以铝的形式给出):(1)Katz-Penfold 射程公式,当电子能量大于2.5MeV 时有ρ 为铝或水的密度,k1 和k2 可按照下表取值参数k1,k2 取值表对于纯铝,ρ=2.7×103mg/cm3,因此可得纯铝的射程公式为:对于铝合金,ρ=2.8×103mg/cm3,故可得铝合金的射程公式为根据GB/T16841-1997,对于铝,当电子能量在1.0MeV 和10MeV 之间时,以MeV 为单位的电子束能量E 与以cm 为单位的射程R p 之间的关系可以用下列二次方程表示:根据文献可得当电子能量在4~12MeV 时,电子在铝中的射程公式为式中E 为电子束能量,单位MeV,R p 为射程,单位cm能量为2.5~25MeV 的电子束在铝中穿透深度R p(cm)与电子能量E(MeV)的关系有如下经验公式能量为2.0~12MeV 的电子束在铝中穿透深度Rp(cm)与电子能量E(MeV)的关系为:能量为5~25MeV 的电子束在铝中穿透深度R p(cm)与电子能量E(MeV)的关系有如下经验公式二.国内外研究状况2.1 国内研究状况实际应用中,由于磁偏转法所需设备比较复杂,而且不适合测量从扫描盒引出的电子束的能量;半价层法在测量精度上较射程法要好,但需要打靶产生X 射线,处理过程比较复杂;工业用加速器电子束能量测量误差在10%-15%内即可满足要求,所以射程测量法在常规测量中使用得较多文献结果表明,在辐照加速器电子束能量测量方面,国内所做工作为前述方法的应用,其中以射程法最为普遍。

为了得到电子束的射程值R p ,采用阶梯铝板射程法对4.5MeV/2.5kW 的辐照灭菌加速器能量进行了测量,测量装置如下图所示阶梯铝板射程法电子束射程测量装置X-Y 记录仪输出结果如下图所示。

为了得到电子束的射程,需要对该结果数据进行选取并重新作图,采用外推法得到R p 值。

采用公式进行计算,得到电子束能量为4.57MeV,测量结果与加速器标称结果吻合较好。

多次测量得到能量不确定度为±2.5%。

测量结果采用阶梯铝板射程法对NFZ_10 辐照用电子直线加速器的电子束能量进行了测量,所用装置如下图所示。

电子射程法测量示意图对12MeV 能档的测量结果如图所示,从图中得到R p 值后,代入公式进行计算,得到电子束能量为12.5MeV。

多次测量表明所用NFZ_10 辐照用电子直线加速器符合设计要求且优于国家行业标准要求。

经过多次测量,得到能量不确定度≤1.8%。

12MeV 能档I/Rp 曲线(铝吸收法)采用盖波片对电子束的射程进行了测量,其测量装置示意图如下图所示。

测量时,将A,B 两只内置盖玻片的铅盒放在参考面上、参考点附近两对称的位置上,同步进行静态辐照。

在束流扫描状态下,让电子束垂直轰击置于参考面上、铅盒里的盖玻片叠层(铅盒在面向束流的一方开有Φ8mm的人射孔),在每个电流表读数点上的辐照时间为5min。

然后关闭加速器,取出盖玻片。

用分光光度仪检测盖玻片因遭电子束流轰击而导致的变色痕迹。

这里,盖玻片作为吸收片和射线探测器两者使用。

用分析天平称量变色盖玻片的重量,由此得出电子束在盖玻片中的射程。

再使用伊凡斯(Evans)的射程-能量关系式,就可以得到待测电子束的能量。

结果表明,在1-3MeV 能量范围内,能量测定准确度优于±10%。

在得到电子束在盖波片中的射程之后,则采用查表的方法,插值得到电子束的能量。

参考点和参考面示意图2.2 国外研究状况国外ISOF-CNR 研究所的P.G. Fuochi 等人在实验的基础上提出了一种基于电荷沉积分布的测量电子束能量的方法。

该方法所用装置如图所示。

Electron-beam energy device (a) schematic and (b) front view.该装置的主要部分为图a)中的两块铝板(前板和后板),铝板置于铝制外壳内,通过陶瓷环固定并与外壳绝缘,两板间距5mm,板上接有引线用于测量两板上的电信号,外壳接地。

前板厚度采用最优化厚度,后板厚度取25mm保证电子束不能穿透后板。

其实验平台为两台名为ISOF和II的加速器。

ISOF 能量从6-12MeV 可调,II 加速器能量从4-10MeV 可调。

在使用该装置前,需要先测量前板的电荷沉积曲线以确定最优化厚度(即装置最终采用的前板厚度)。

测量前板电荷沉积曲线的具体做法是,采用一系列直径为100mm、厚度为0.5mm 的铝片叠加作为前板,通过改变铝片的数量来改变前板厚度,测量不同厚度时前板的积分电荷量,得到如图中实线所示的积分电荷沉积曲线。

对积分电荷沉积曲线作微分,可以得到微分电荷沉积曲线如图虚线所示。

最优化厚度即前板厚度即采用微分电荷沉积曲线的峰值点所对应的厚度。

对ISOF 加速器,最优化厚度为12mm,对II 加速器,最优化厚度为5mm。

Fuochi 等人测量到的ISOF 加速器引出电子束对应的Al 中的电荷沉积曲线(积分和微分),剂量深度曲线亦示于图中电荷量的测量可以转为对电流的测量。

Fuochi 等人在其文章中提出了能量比的概念:能量比=前板电流/(前板电流+后板电流)可见其文中的能量比的概念其实是电流比,为与原文图表保持一致,后续说明仍采用能量比这一概念。

在使用该装置前,还需要确定电子束能量,Fuochi 等人采用射程法测量电子束的能量:先测量剂量分布曲线(下图),从曲线获得外推值R p(单位)II 加速器电子束在铝中的典型剂量分布曲线Fuochi 等人在ISOF 和II 两台加速器上进行实验,测量得到对应不同能量E p 时的能量比,将测量结果进行线性拟合,得到了如下三张图所示的实验结果ISOF 加速器的能量比与最可几能量(E p)的关系ISOF 加速器的最可几能量(E p)与能量比的关系(长脉冲)虚线和点线分别表示线性拟合结果的95%预测区间和置信区间II 加速器的能量比与最可几能量(E p)的关系虚线表示线性拟合结果的95%预测区间从实验结果来看,能量比与能量E p 存在较好的线性关系,测量数据基本落在拟合结果的95%预测期间(代表±0.3MeV)。

因此Fuochi 等人得出结论:实验结果的良好的线性度表明,装置测量得到的能量比对能量是很敏感的。

该装置能够用做能量在4-12MeV 电子束的能量测量装置。

这一装置具有结构简单、对辐照应用精度可接受以及容易实现在线使用等优点。

ISOF 和II 加速器的能量比与最可几能量(E p)的关系小结:综合以上分析可以看出,对于精度较高的测量方法,其所需设备比较复杂,对于能量偏差范围在±10%范围内的辐照用电子直线加速器而言,并不需要如此高的测量精度。

相关主题