当前位置:文档之家› 手把手教你学51单片机之十八RS485通信与Modbus协议

手把手教你学51单片机之十八RS485通信与Modbus协议

在工业控制、电力通讯、智能仪表等领域,通常情况下是采用串口通信的方式进行数据交换。

最初采用的方式是 RS232 接口,由于工业现场比较复杂,各种电气设备会在环境中产生比较多的电磁干扰,会导致信号传输错误。

除此之外,RS232 接口只能实现点对点通信,不具备联网功能,最大传输距离也只能达到几十米,不能满足远距离通信要求。

而 RS485 则解决了这些问题,数据信号采用差分传输方式,可以有效的解决共模干扰问题,最大距离可以到1200 米,并且允许多个收发设备接到同一条总线上。

随着工业应用通信越来越多, 1979 年施耐德电气制定了一个用于工业现场的总线协议 Modbus 协议,现在工业中使用RS485 通信场合很多都采用 Modbus 协议,本节课我们要讲解一下 RS485 通信和Modbus 协议。

单单使用一块KST-51 开发板是不能够进行RS485 实验的,应很多同学的要求,把这节课作为扩展课程讲一下,如果要做本课相关实验,需要自行购买USB 转 485 通信模块。

18.1 RS485通信实际上在 RS485 之前 RS232 就已经诞生,但是RS232 有几处不足的地方:1、接口的信号电平值较高,达到十几V ,容易损坏接口电路的芯片,而且和TTL 电平不兼容,因此和单片机电路接起来的话必须加转换电路。

2、传输速率有局限,不可以过高,一般到几十Kb/s 就到极限了。

3、接口使用信号线和GND 与其他设备形成共地模式的通信,这种共地模式传输容易产生干扰,并且抗干扰性能也比较弱。

4、传输距离有限,最多只能通信几十米。

5、通信的时候只能两点之间进行通信,不能够实现多机联网通信。

针对 RS232 接口的不足,就不断出现了一些新的接口标准,RS485 就是其中之一,他具备以下的特点:1、我们在讲A/D 的时候,讲过差分信号输入的概念,同时也介绍了差分输入的好处,最大的优势是可以抑制共模干扰。

尤其工业现场的环境比较复杂,干扰比较多,所以通信如果采用的是差分方式,就可以有效的抑制共模干扰。

而RS485 就是一种差分通信方式,它的通信线路是两根,通常用 A 和B 或者D+ 和 D- 来表示。

逻辑“ 1”以两线之间的电压差为+(0.2~6)V 表示,逻辑“0”以两线间的电压差为-(0.2~6)V来表示,是一种典型的差分通信。

2、 RS485通信速度快,最大传输速度可以达到10Mb/s以上。

3、RS485 内部的物理结构,采用的是平衡驱动器和差分接收器的组合,抗干扰能力也大大增加。

4、传输距离最远可以达到1200 米左右,但是他的传输速率和传输距离是成反比的,只有在100Kb/s 以下的传输速度,才能达到最大的通信距离,如果需要传输更远距离可以使用中继。

5、可以在总线上进行联网实现多机通信,总线上允许挂多个收发器,从现有的RS485 芯片来看,有可以挂32、 64、 128、 256 等不同个设备的驱动器。

RS485 的接口非常简单,和RS232 所使用的MAX232是类似的,只需要一个RS485 转换器,就可以直接和我们单片机的UART 串行接口连接起来,并且完全使用的是和UART 一致的异步串行通信协议。

但是由于RS485 是差分通信,因此接收数据和发送数据是不能同时进行的,也就是说它是一种半双工通信。

那我们如何判断什么时候发送,什么时候接收呢?RS485 类的芯片很多,这节课我们以 MAX485 为例讲解 RS485 通信,如图 18-1 所示。

图18-1 MAX485 硬件接口MAX485 是美信 (Maxim) 推出的一款常用 RS485 转换器。

其中 5 脚和 8 脚是电源引脚, 6 脚和 7 脚就是 485 通信中的 A 和 B 两个引脚,而 1 脚和 4 脚分别接到我们单片机的RXD 和TXD 引脚上,直接使用单片机UART 进行数据接收和发送。

而 2 脚和 3 脚就是方向引脚了,其中 2 脚是低电平使能接收器, 3 脚是高电平使能输出驱动器。

我们把这两个引脚连到一起,平时不发送数据的时候,保持这两个引脚是低电平,让MAX485 处于接收状态,当需要发送数据的时候,把这个引脚拉高,发送数据,发送完毕后再拉低这个引脚就可以了。

为了提高 RS485 的抗干扰性能,需要在靠近 MAX485的 A 和 B 引脚之间并接一个电阻,这个电阻阻值从 100 欧到 1K 都可以。

在这里我们还要介绍一下如何使用KST-51 单片机开发板进行外围扩展实验。

我们的开发板只能把基本的功能给同学们做出来提供实验练习,但是同学们学习的脚步不应该停留在这个实验板上。

如果想进行更多的实验,就可以通过单片机开发板的扩展接口进行扩展实验。

大家可以看到蓝绿色的单片机座周围有32 个插针,这32 个插针就是把单片机的32个IO 引脚全部都引出来了。

在原理图上体现出来的就是我们的J4、J5、J6、 J7 这 4 个器件,如图18-2 所示。

图18-2 单片机扩展接口这32 个 IO 口不是所有的 IO 口都可以用来对外扩展,其中既作为数据输出,又可以作为数据输入的引脚是不可以用的,比如P3.2、 P3.4、P3.6 引脚,这三个引脚是不可用的。

比如P3.2 这个引脚,如果我们用来扩展,发送的信号如果和DS18B20 的时序吻合,会导致DS18B20 拉低引脚,影响通信。

除这 3 个 IO 口以外的其他 29 个 IO 口,都可以使用杜邦线接上插针,扩展出来使用。

当然了,如果把当前的IO 口应用于扩展功能了,板子上的相应的功能就实现不了了,也就是说需要扩展功能和板载功能二选一。

在进行 RS485 实验中,我们通信用的引脚必须是P3.0 和 P3.1,此外还有一个方向控制引脚,我们使用杜邦线将其连接到P1.7 上去。

RS485 的另外一端,大家可以使用一个USB 转 485模块,用双绞线把开发板和模块上的 A 和 B 分别对应连起来, USB 那头插入电脑,然后就可以进行通信了。

学习了第 13 章的实用串口通信的方法和程序后,做这种串口通信的方法就很简单了,基本是一致的。

我们使用实用串口通信的思路,做了一个简单的程序,通过串口调试助手下发任意个字符,单片机接收到后在末尾添加“回车+换行”符后再送回,在调试助手上重新显示出来,先把程序贴出来。

程序中需要注意的一点是:因为平常都是将485 设置为接收状态,只有在发送数据的时候才将485 改为发送状态,所以在 UartWrite() 函数开头将 485 方向引脚拉高,函数退出前再拉低。

但是这里有一个细节,就是单片机的发送和接收中断产生的时刻都是在停止位的一半上,也就是说每当停止位传送了一半的时候,RI或TI就已经置位并且马上进入中断(如果中断使能的话)函数了,接收的时候自然不会存在问题,但发送的时候就不一样了:当紧接这向SBUF写入一个字节数据时,UART硬件会在完成上一个停止位的发送后,再开始新字节的发送,但如果此时不是继续发送下一个字节,而是已经发送完毕了,要停止发送并将485方向引脚拉低以使485 重新处于接收状态时就有问题了,因为这时候最后的这个停止位实际只发送了一半,还没有完全完成,所以就有了UartWrite() 函数内 DelayX10us(5)这个操作,这是人为的增加了延时50us ,这 50us 的时间正好让剩下的一半停止位完成,那么这个时间自然就是由通信波特率决定的了,为波特率周期的一半。

/***********************RS485.c文件程序源代码*************************/#include <reg52.h>#include <intrins.h>sbit RS485_DIR = P1^7; //RS485方向选择引脚bit flagOnceTxd = 0; //单次发送完成标志,即发送完一个字节bit cmdArrived = 0;// 命令到达标志,即接收到上位机下发的命令unsigned char cntRxd = 0;unsigned char pdata bufRxd[40]; //串口接收缓冲区void ConfigUART(unsigned int baud) //串口配置函数,baud 为波特率{RS485_DIR = 0; //RS485设置为接收方向SCON = 0x50;//配置串口为模式1TMOD &= 0x0F; //清零T1的控制位TMOD |= 0x20; //配置T1为模式2TH1 = 256 - (11059200/12/32) / baud; //计算 T1 重载值TL1 = TH1;// 初值等于重载值ET1 = 0;// 禁止 T1 中断ES = 1;//使能串口中断TR1 = 1;//启动 T1}unsigned char UartRead(unsigned char *buf, unsigned char len) //串口数据读取函数,数据接收指针buf ,读取数据长度len ,返回值为实际读取到的数据长度{unsigned char i;if (len > cntRxd) //读取长度大于接收到的数据长度时,{len = cntRxd; //读取长度设置为实际接收到的数据长度}for (i=0; i<len; i++) //拷贝接收到的数据{*buf = bufRxd[ i];buf++;}cntRxd = 0; // 清零接收计数器return len; // 返回实际读取长度}void DelayX10us(unsigned char t) //软件延时函数,延时时间(t*10)us{do {_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();} while (--t);}void UartWrite(unsigned char *buf, unsigned char len) // 串口数据写入函数,即串口发送函数,待发送数据指针 buf ,数据长度 len{RS485_DIR = 1; //RS485设置为发送while (len--)//发送数据{flagOnceTxd = 0;SBUF = *buf;buf++;while (!flagOnceTxd);}DelayX10us(5); // 等待最后的停止位完成,延时时间由波特率决定RS485_DIR = 0; //RS485 设置为接收}void UartDriver() //串口驱动函数,检测接收到的命令并执行相应动作{unsigned char len;unsigned char buf[30];if (cmdArrived) //有命令到达时,读取处理该命令{cmdArrived = 0;len = UartRead(buf, sizeof(buf)-2); //将接收到的命令读取到缓冲区中buf[len++] = '\r';//在接收到的数据帧后添加换车换行符后发回buf[len++] = '\n';UartWrite(buf, len);}}void UartRxMonitor(unsigned char ms) //串口接收监控函数{static unsigned char cntbkp = 0;static unsigned char idletmr = 0;if (cntRxd > 0) //接收计数器大于零时,监控总线空闲时间{if (cntbkp != cntRxd) //接收计数器改变,即刚接收到数据时,清零空闲计时{cntbkp = cntRxd;idletmr = 0;}else{if (idletmr < 30) //接收计数器未改变,即总线空闲时,累积空闲时间{idletmr += ms;if (idletmr >= 30) //空闲时间超过30ms 即认为一帧命令接收完毕{cmdArrived = 1; //设置命令到达标志}}}}else{cntbkp = 0;}}void InterruptUART() interrupt 4 //UART中断服务函数{if (RI) // 接收到字节{RI = 0;//手动清零接收中断标志位if (cntRxd < sizeof(bufRxd)) //接收缓冲区尚未用完时,{bufRxd[cntRxd++] = SBUF; //保存接收字节,并递增计数器}}if (TI) // 字节发送完毕{TI = 0;//手动清零发送中断标志位flagOnceTxd = 1; //设置单次发送完成标志}}/***********************main.c文件程序源代码*************************/ #include <reg52.h>unsigned char T0RH = 0; //T0重载值的高字节unsigned char T0RL = 0; //T0重载值的低字节void ConfigTimer0(unsigned int ms);extern void ConfigUART(unsigned int baud);extern void UartRxMonitor(unsigned char ms);extern void UartDriver();void main (){EA = 1;// 开总中断ConfigTimer0(1); //配置T0定时1msConfigUART(9600); //配置波特率为9600while(1){UartDriver();}}void ConfigTimer0(unsigned int ms) //T0配置函数{unsigned long tmp;tmp = 11059200 / 12;//定时器计数频率tmp = (tmp * ms) / 1000; //计算所需的计数值tmp = 65536 - tmp;//计算定时器重载值tmp = tmp + 34;// 修正中断响应延时造成的误差T0RH = (unsigned char)(tmp >> 8); //定时器重载值拆分为高低字节T0RL = (unsigned char)tmp;TMOD &= 0xF0;// 清零 T0 的控制位TMOD |= 0x01;//配置T0为模式1TH0 = T0RH;// 加载T0 重载值TL0 = T0RL;ET0 = 1;// 使能T0 中断TR0 = 1;//启动T0}void InterruptTimer0() interrupt 1 //T0中断服务函数{TH0 = T0RH; //定时器重新加载重载值TL0 = T0RL;UartRxMonitor(1); //串口接收监控}现在看这种串口程序,是不是感觉很简单了呢?串口通信程序我们反反复复的使用,加上随着我们学习的模块越来越多,实践的越来越多,原先感觉很复杂的东西,现在就会感到简单了。

相关主题