当前位置:文档之家› 水平井钻井专用工具解剖

水平井钻井专用工具解剖

水平井钻井专用工具 水平井钻井技术是指在一定钻井工艺的控制下使井眼由垂直状态变为水平状态或近似水平状态,这种钻井原理同定向钻井极为类似,也可以说,水平井钻井即是一种难度较大的特殊定向钻井。水平井要求在产层或某一指定的地层钻成有一定长度延伸的水平段,这就决定了其工艺上固有的特殊性。而工具的选择与使用必须能够保证钻头(或钻柱)按照设计的井眼轨迹准确运行。 水平井、特别是中半径水平井井身轨迹的特殊性,需要造斜工具必须具有较高的造斜能力,这是钻成水平井的基本保障;其次,在满足高造斜率要求的基础上还必须使工具有较好的稳定性。要想使井眼有一定的偏斜并不困难,以往的定向钻井工艺早已解决了这方面的问题,但当井斜角大到一定程度后,继续增斜、至使井斜角接近或超过90°,这就存在着很大的难度,这是常规的定向钻井工具所不能完成的。另外,水平井段的钻进也是我们前未遇的新问题,钻柱在这种特殊状态下的延伸必须有特殊的工具辅以维持。 为了满足水平井钻井施工的需要,设计制造出钻各种大、中曲率半径水平井的井下专用工具,通过现场试验使用进一步改进完善,总结出适合水平井钻井的工具模式。一般说来,水平井钻井的生产工序环节,大致上分为造斜,增斜、稳斜或稳平,有时根据地质要求需另附加水平取芯段。水平井井身轨迹的控制要求严格,各阶段使用的工具不尽相同,各种工具的研究技术难点也各不相同。 水平井钻井工具主要包括水平井钻井常用井下工具和地面工具两部分,该章主要介绍的井下工具是稳定器、无磁钻铤、螺旋钻铤、加重钻杆、定向接头、弯接头、定向弯接头、定向造斜专用PDC钻头、井底动力钻具(螺杆动力钻具、涡轮钻具)•和水平井取心工具等。地面工具主要包括转盘量角器、钻杆量角器、钻铤量角器、方钻杆标定尺、钻杆划线规、定向键调节扳手。 稳 定 器 一、概述 稳定器用途最为广泛,不论是增斜降斜段,还是稳斜稳平段,都是不可缺少的工具之一。根据不同生产段的需要和水平井自身的特点,有着不同稳定器的形状及几何尺寸。综合考虑各种客观因素,确定稳定器在钻具组合中的最佳位置。 1.稳定器的种类: 按稳定器的结构可将稳定器分为以下几种类型:螺旋稳定器、直条稳定器、无磁稳定器、可换片稳定器、滚子稳定器、偏心稳定器、近钻头稳定器(双母稳定器)等。 2.各种稳定器的特点: (1)•直条稳定器有结构简单起钻较容易的特点,对井壁切削最严重,稳定器效果不如螺旋稳定器好。 (2) 螺旋稳定器稳定器效果好,但起钻困难,易泥包。 (3)•滚子稳定器扭矩最小,稳定效果好,方位不易右漂,但存在结构复杂、价格高、更换滚子困难等缺点。 (4) 无磁稳定器用于无磁钻铤之间需要使用稳定器的情况下。 (5)•近钻头稳定器(双母稳定器)直接接钻头,不需要配合接头,缩小了钻头到稳定器中点的距离。 3.稳定器的用途特点 井底钻具组合通过在不同部位接入稳定器,可以有效的改变钻具与井壁的触点,使得钻具成为增斜组合、稳斜组合、降斜组合等。稳定器与钻具组成不同钻具组合用以完成各井段的施工,其基本工作原理在水平井中同样得到了充分利用,水平井稳定器应具有如下几个方面的特点: a)在大斜度或水平井段使用旋转方式钻进时必须具有更好的保径性能及耐磨性能。 b) 在大斜度或水平段使用时,要有利于传递钻压、减少摩阻。 c)在钻具组合中能更好地起到单点支撑作用,有利于控制井身轨迹达到设计要求。 d)在各类地层中都有良好的扶正效果,并使井径扩大率控制到最小。 e) 减少泥浆流动的环空阻力,保证井眼畅通,起下顺利。 f)在测量对磁性干扰有特殊要求的场合,稳定器应采用无磁材料。 二、水平井稳定器的结构 稳定器在水平井中的作用效果与其本身的形状和外形尺寸有密切关系。为了满足水平井钻井过程中控制增斜,稳斜或降斜等的需要,设计了短螺旋稳定器、球形稳定器,锥形稳定器、偏心稳定器和动力钻具稳定器。 1. PWZ锥形稳定器 PWZ 型锥形稳定器主要用于近钻头的钻具扶正。设计扶正翼较短、取三棱螺旋状结构,螺旋槽在转动时能使泥浆以较小的阻力流过,有利于清洗井壁,扶正翼与本体间以30°倒角过渡,螺旋条凸起表面及倒角背锥加密镶装硬质合金以增加其耐磨性。为在软地层中加强稳定效果并能有效地控制井径扩大率,螺旋体取圆锥外形增加了与井壁接触面积。 2. PWD型短螺旋稳定器 PWD 型外螺旋稳定器为钻柱型稳定器,•在钻具组合中通常加于PWZ之上,与一般螺旋稳定器相比,其主要特点是减少了扶正面积,可降低磨擦阻力,其他设计要求与 PWZ基本相同。 3. PWQ球形稳定器 PWQ 形稳定器表面设计近似球形,主要是为了减小磨阻,容易通过造斜井段。在旋转钻井钻具组合中通常配接在 PWD之上,用于稳直段;有时,该稳定器也替代 PWD与 PWZ配合用于增斜或降斜。 4. PWL型动力钻具稳定器 PWL 型动力钻具稳定器用于弯壳体动力钻具的近钻头扶正,主要作用为增斜。•基于减少磨阻和便于钻压传递的考虑,PWL型稳定器初始设计为五棱鼓形结构,由于在使用中发现因块正条翼间距较大,条翼凸部与动力钻具的背弯不易准确对正,难以实现与井壁稳定地支撑,而凸、凹部位做为支点所产生的造斜效果却相差较大,为此在设计上做了如下的改进:将其中两扶正条间填平加工成一个宽条,其宽度约为原在单扶正条的3倍,宽块正条安装在动力钻具的背弯方向,在井内支撑于下井壁。这一改进较好地解决了稳定扶正和有效控制造斜率的问题,在以后水平井的施工中得到了满意的效果。 5. PWP型偏心稳定器 PWP 型偏心稳定器通常加接在紧靠在动力钻具的上面,有利于增强动力钻具的刚性,•从而使造斜率均匀一致并保证方位稳定。PWP偏心稳定器的加入可与动力钻具组配成更有利于造斜的钻具结构。安装时应使其偏心距最大的部位与动力钻具弯向一致,使之与上井壁接触,从而迫使稳定器的背部成为钻具在下井壁的一个稳定支点。PWP与近钻头稳定器相互作用,使动力钻具的倾斜、钻头偏移量和侧向力的方向都将更有利于井身轨迹沿增斜趋势延伸。 三、稳定器在定向井、水平井钻具组合中的作用原理 稳定器在钻具组合中的安放位置不同,钻具组合所表现的性质就不同,一般地将,近钻头稳定器离钻头越近,钻头的增斜力就越大,反之钻头的增斜力则越小。对于用两只以上稳定器的钻具组合来讲,一号稳定器和二号稳定器之间的距离在有效范围内越大,钻头的增斜 力越大,反之钻头的增斜力越小。下边应用力学理论对稳定器的作用原理进行分析。 L1 L2 L3 L4

图5-1 底部钻具组合示意图

设a.井壁是刚性的; b.稳定器与井壁之间无摩擦; c.钻柱旋转无影响; d.钻具组合中共有n个稳定器。 根据纵横连续梁理论,那么第i(i=1,2,…,n)个稳定器的三弯矩方程为:

式 中:

Si 第i段钻柱的轴向力 N Mi 第i个稳定器处的钻柱内弯矩 N·M Ri 第i个稳定器处的井壁反力 N R0 钻头处的井壁反力 N Qi 第i段钻柱的横向载荷 N/m Ii 第i段钻柱的惯性矩 m4 E 钻柱的弹性模量 N/m2 Pi 第i段钻柱在空气中单位长度重量 N/m ρc 钢材密度 g/cm3 ρm 钻井液密度 g/cm3 α 井斜角 (°) Δri 第i个稳定器与井壁之间的半径差值 m

iiiiiiiiiiiiiiiiiiiiiiiiEQILqILqMILMILILMIL64421311131111111211123)2sin(3IiiiiiiiiiiuuuLrrLrrQ

212

3

2

4)(3)2(23)2(3iiiiiiiiiiiIEILSu

uutguutguu

 Yi 第i段钻柱的最大挠度 m θφ 钻头转角 rad

切点处的辅助方程:

第i个稳定器处的井壁反力 式 中:

由上述三式可以求得钻头处的侧向力Pc: 式中 ΔrI=Di-D井眼 DI为稳定器的外径, D井眼 为井眼直径。

上式表明了稳定器的安放位置、外径对钻头的侧向力起着重要作用。当井径一定时,稳定器外径在有限范围内越大,钻头的增斜力越大。安放位置离钻头越远,钻头增斜力越小。

四、稳定器在定向井、水平井轨迹控制中的应用实践 稳定器在钻具组合中的工作原理,早已在一般直井和定向井的钻井实践中得到了认识。由于水平井和大位移井在世界各油田的普及与发展,使得人们对稳定器的工作原理及其作用下的造斜规律取得了更为深刻的认识,虽然理论推导和公式计算与实际有一定差距,但也正确地反映了其作用规律。下边针对多年来的钻井实践,通过对部分井使用情况的统计分析,•可以看出稳定器在钻具组合中影响造斜性能的一般规律。

1111311111246nnnnnnnnnnnLrrEILqEI

LM

"'iiiRRR

1111211"1112'1)(21)(2iiiiiiiiiiiiiiiiiiLrrSMMLqRL

rrSMMLqR

iiiiiicLrSMLqRP1220



相关主题