当前位置:文档之家› 轮毂电机驱动技术解析

轮毂电机驱动技术解析

未来电驱动主力 轮毂电机驱动技术解析 2011年06月05日 01:55 来源:Che168 类型:转载 编辑:胡正暘 新能源车现在已经成为汽车行业颇具前瞻性的领域,而新能源车型的驱动技术和传统内燃机汽车有着不小的区别,而其中有一类驱动技术有着很大的发展前景,这就是轮毂电机技术,它和传统的动力系统有何区别呢?它有哪些优点和缺点呢?下面就来看看轮毂电机技术到底有哪些独到之处。

采用轮毂电机技术的福特F-150将此前的所有传动部件通通舍弃不用 注:轮毂严格意义上讲仅指与传动轴连接的法兰、轴承座等部分,不过轮毂这一名词对于普通用户目前更多指的是轮圈,下文中涉及的轮毂一词将涵盖狭义的轮毂和轮圈两部分。

● 轮毂电机技术简介 轮毂电机技术又称车轮内装电机技术,它的最大特点就是将动力、传动和制动装置都整合到轮毂内,因此将电动车辆的机械部分大大简化。轮毂电机技术并非新生事物,早在1900年,保时捷就首先制造出了前轮装备轮毂电机的电动汽车,在20世纪70年代,这一技术在矿山运输车等领域得到应用。而对于乘用车所用的轮毂电机,日系厂商对于此项技术研发开展较早,目前处于领先地位,包括通用、丰田在内的国际汽车巨头也都对该技术有所涉足。目前国内也有自主品牌汽车厂商开始研发此项技术,在2011年上海车展展出的瑞麒X1增程电动车就采用了轮毂电机技术。 米其林研发的将轮毂电机和电子主动悬挂都整合到轮内的驱动/悬挂系统结构图 本田研发的轮毂电机实物 上海车展上的瑞麒X1-EV

通用开发的为150吨的重型卡车设计的轮毂电机(内燃动力电传动) 典型内转子结构的轮毂电机驱动系统结构示意图 轮毂电机驱动系统根据电机的转子型式主要分成两种结构型式:内转子式和外转子式。其中外转子式采用低速外传子电机,电机的最高转速在1000-1500r/min,无减速装置,车轮的转速与电机相同;而内转子式则采用高速内转子电机,配备固定传动比的减速器,为获得较高的功率密度,电机的转速可高达10000r/min。随着更为紧凑的行星齿轮减速器的出现,内转子式轮毂电机在功率密度方面比低速外转子式更具竞争力。

● 轮毂电机的优缺点 优点1:省略大量传动部件,让车辆结构更简单 类似上图中这种传统变速器在轮毂电机驱动的车辆上已经见不到了

传统后驱车车厢后排地板上的突起在电动车上也会消失,为乘员腾出更大的空间 对于传统车辆来说,离合器、变速器、传动轴、差速器乃至分动器都是必不可少的,而这些部件不但重量不轻、让车辆的结构更为复杂,同时也存在需要定期维护和故障率的问题。但是轮毂电机就很好地解决了这个问题。除开结构更为简单之外,采用轮毂电机驱动的车辆可以获得更好的空间利用率,同时传动效率也要高出不少。 优点2:可实现多种复杂的驱动方式 像AHED“先进混合电驱动”样车这样的8轮电驱动很轻松就能实现 由于轮毂电机具备单个车轮独立驱动的特性,因此无论是前驱、后驱还是四驱形式,它都可以比较轻松地实现,全时四驱在轮毂电机驱动的车辆上实现起来非常容易。同时轮毂电机可以通过左右车轮的不同转速甚至反转实现类似履带式车辆的差动转向,大大减小车辆的转弯半径,在特殊情况下几乎可以实现原地转向(不过此时对车辆转向机构和轮胎的磨损较大),对于特种车辆很有价值。

优点3:便于采用多种新能源车技术 采用轮毂电机可以匹配包括纯电动、混合动力和燃料电池电动车等多种新能源车型

轮毂电机可以和传统动力并联使用,这对于混合动力车型很有意义 新能源车型不少都采用电驱动,因此轮毂电机驱动也就派上了大用场。无论是纯电动还是燃料电池电动车,抑或是增程电动车,都可以用轮毂电机作为主要驱动力;即便是对于混合动力车型,也可以采用轮毂电机作为起步或者急加速时的助力,可谓是一机多用。同时,新能源车的很多技术,比如制动能量回收(即再生制动)也可以很轻松地在轮毂电机驱动车型上得以实现。

缺点1:增大簧下质量和轮毂的转动惯量,对车辆的操控有所影响 铝制下摆臂采用主要就为减重,如果加上轮毂电机,这些努力也就白费了 对于普通民用车辆来说,常常用一些相对轻质的材料比如铝合金来制作悬挂的部件,以减轻簧下质量,提升悬挂的响应速度。可是轮毂电机恰好较大幅度地增大了簧下质量,同时也增加了轮毂的转动惯量,这对于车辆的操控性能是不利的。不过考虑到电动车型大多限于代步而非追求动力性能,这一点尚不是最大缺陷。

缺点2:电制动性能有限,维持制动系统运行需要消耗不少电能

商用车车桥的内置缓速器采用涡流制动原理,而轮毂电机的制动也可以利用这一原理 现在的传统动力商用车已经有不少装备了利用涡流制动原理(也即电阻制动)的辅助减速设备,比如很多卡车所用的电动缓速器。而由于能源的关系,电动车采用电制动也是首选,不过对于轮毂电机驱动的车辆,由于轮毂电机系统的电制动容量较小,不能满足整车制动性能的要求,都需要附加机械制动系统,但是对于普通电动乘用车,没有了传统内燃机带动的真空泵,就需要电动真空泵来提供刹车助力,但也就意味了有着更大的能量消耗,即便是再生制动能回收一些能量,如果要确保制动系统的效能,制动系统消耗的能量也是影响电动车续航里程的重要因素之一。 此外,轮毂电机工作的环境恶劣,面临水、灰尘等多方面影响,在密封方面也有较高要求,同时在设计上也需要为轮毂电机单独考虑散热问题。

结语: 与电动机集中动力驱动相比,轮毂电机技术具备很大的优势,它布局更为灵活,不需要复杂的机械传动系统,同时也有自己的显著不足,比如密封和起步电流/扭矩间的平衡关系,以及转向时驱动轮的差速问题等等,如果能在工程上解决这些难题,轮毂电机驱动技术将在未来的新能源车中拥有广阔的前景。

轮毂电机:电动车发展推手 兼顾电动制动 作者:王贵明 王金懿 2011年02月17日14:11 来源:《新能源汽车》 节能环保的电动汽车未能及时推广的主要原因是其性价比。目前研发的电动汽车由于受传统汽车设计思路所束缚,其结构仅在传统汽车基础上改装而成,未能充分发挥电机驱动应有的各种技术优势,以致使性价比也难有突破性提高。通过对各种电动汽车动力传动机构的分析比较,采用轮毂式电机驱动方式是最能充分发挥其电机驱动的技术优势。再根据汽车在各种运行工况的特性分析,得出电动汽车对其驱动电机在起步、加速、减速、制动等状况时的各种特性要求。 轮毂电机在电动汽车上应用不仅可实现小马拉大车、提高电机驱动效率的效果,还大大简化了机械传动机构,减轻整车自重,减小其传动和附加损耗,即降低成本,也节能减噪,并且如同高档轿车采用四轮驱动,可进一步提高车轮控制的动态响应性,通过微机控制更易实现在传统轿车上较难实施的各种性能优化措施,从而改善操控性和安全性。以此即可全面提高节能环保型电动微轿车的各项性能指标和性价比,使其达到普及型商品化要求,对推广电动汽车和节能减排起到极好效果。 变磁阻双凸极电机作用强大 通过对车辆起步、加速、爬坡、下坡、高速、低速、滑行、降速、制动和停车等各种行驶工况特性的全面分析,总结出电动汽车对驱动电机的六项性能要求:有较大的启动扭矩和相当的短时过载能力以满足汽车起步、加速和上坡时要求;改善电机的启动特性,避免过大的启动峰值电流损坏蓄电池;有较宽调速范围和理想调速特性以满足汽车高、低速各工况行驶要求;要求电机正反转以简化汽车倒车机构;需电机能方便有效实现发电回馈,将汽车在降速制动和下坡时的动能自动回馈蓄电池,以节能和提高续驶里程;设法利用电磁吸力使电 机的定、转子相互吸住来实现电磁制动,避免机械制动存在的热衰退和水衰退,并改进电磁制动功能以缩短制动时间,提高汽车在频繁起、停运行中的制动效能及其恒定性。 根据上述分析得出电动汽车对其轮毂式电机除了有较好的调速性能,还要求同时兼有电动、发电回馈和电磁制动三项功能。通过对直流、交流、永磁无刷、变磁阻等各类调速电机的结构原理和特性分析比较,由于变磁阻双凸极电机具有结构简单、坚固可靠、制造成本低、调速性能好、效率高等优点,能运行于正、反转电动及发电四个象限,为一种新兴的典型机电一体化装置。并具有高起动转矩、低起动电流,即特别适于汽车起步和蓄电池驱动的特性要求。为使电动、发电、制动三功能同时较好地有效发挥,首先确定了采用变磁阻双凸极电机作为其基本结构形式。 为满足电机的多功能要求,利用制作电机模型,反复模拟运行和改进设计,最终通过巧妙合理安排电机双凸极齿与槽的相对宽度和其绕组的空间布局等一系列改进措施,提高和兼顾了电动、发电和制动三功能的较好发挥。为说明对电机改进的思路和基本原理,需先对现有变磁阻双凸极电机的结构原理作必要说明。 变磁阻双凸极电机主要指开关磁阻SRM电机和双凸极永磁DSPM电机。有关变磁阻双凸极电机的结构原理已有不少专著有详尽介绍,在此限于篇幅不再重复,但需借助所推导的理论公式及其结论来进一步分析并提出其改进思路。图1为典型的三相6/4开关磁阻电机结构原理图,如以图中定、转子所处位置为起点,依次给A→C→B→A相绕组顺序通电,则转子在其磁阻转矩的作用下将顺时针转动;反之,若按B→C→A→B顺序通电,则转子就逆时针转动。通过分析可得到其SRM电机产生电磁转矩的基本表达式:(1-1) 它表明SRM电机所产生的瞬时电磁转矩Tem正比于电感L对其转角θ的导数和电流i的平方。而且若电感L是随转角θ的增加而增加时,绕组通入电流所产生的电磁转矩为正,即电磁转矩为驱动性,电机运行于电动机状态;若电感L是随转角θ的增加而减少时,绕组内流过电流则产生负的电磁转矩,即电磁转矩为制动性,电机运行于发电机状态。 如不考虑磁路饱和,绕组电感L是随转角θ呈线性变化。当转子极处于定子两极之间,定子极弧与转子极弧无重合,气隙磁导最小,电感为最小值Lmin。当转子位置角θ增大时,转子极弧与定子极弧开始重合,绕组电感随之增大,当整个定子极弧与转子极弧相重合时,电感达到最大值Lmax,并在βr-βs内保持不变。当θ继续增大时,定、转子极弧的重叠部分将线性减小,故电感随之线性下降。 利用上述电机的电磁转矩公式(1-1)和绕组电感L随转角θ变化的表达式(1-2),即可较好地说明如何实现电动、发电回馈和电磁制动三种不同的控制方式。通常电机的可控变量为绕组电压±US、开通角θon 和关断角θoff 三个参数。在电动机运行状态时,要求以电感增大区作为电路导通区,即如图2所示的转子角θ1和θ2为开通角θon 和关断角θoff的参考点。而在发电机运行状态时,则以电感减小区作为电路导通区,即以转子角θ3和θ4作为开通角θon 和关断角θoff的参考点。并且在电感最大区βr-βs保持电流,即使该相绕组持续通电就可实现电磁制动。 兼顾电动、制动两项功能 根据上述电磁转矩公式(1-1)可知电感L对其转角θ的导数,即磁导(电感)变化率越大,其电磁转矩Tem就越大。反映在电机结构上也就是电机极弧槽距(Δθ)的减小有利

相关主题