石墨烯基超级电容器的结构设计超级电容器是最具应用前景的电化学储能技术之一。目前,超级电容器的研究重点是提高能量密度和功率密度,发展具有高比表面积、电导率和结构稳定性的电极材料是关键。石墨烯因具有比表面积大、电子导电性高、力学性能好的特点而成为理想的电容材料,但石墨烯的理论容量不高,在石墨烯基电极制备过程中容易发生堆叠现象,导致材料比表面积和离子电导率下降。因此,发展合适的制备方法,对石墨烯进行修饰或与其他材料形成复合电极材料是一种有效解决途径。本文对石墨烯基电极及其在双电层电容器、法拉第准电容器和混合型超级电容器中的应用的研究进展进行归纳,重点介绍了石墨烯凝胶薄膜电极的制备过程,以促进石墨烯基电极在超级电容器构筑中应用。传统化石能源资源的日益匮乏和环境的日趋恶化,有力地促进了太阳能和风能等可再生能源的发展但太阳能、风能具有波动性和间歇性,需要有效的储能装置保证其能够稳定的在电网中并网工作。同时,电动汽车产业的快速发展也迫切需要发展成本低、环境友好、能量密度高的储能装置。超级电容器是介于传统电容器和二次电池之间的一种电化学储能装置,其容量可达几百甚至上千法拉。自1975年Conway首次提出法拉第准电容的储能原理以来,超级电容器的研发已经得到了长足的发展,日本NEC、松下、本田、日立和美国Maxell等公司开发出的小型超级电容器已开始推向市场,在小型移动电子设备、汽车能量回收等领域应用。法国SAFT公司、韩国NESE公司等也在进行超级电容器的研究和开发。美国的USMSC计划、日本的NewSunshine计划和欧洲的PNGU计划均将超级电容器列入开发内容。我国将“超级电容器关键材料的研究和制备技术”列入到《国家中长期科学和技术发展纲要(2006—2020年)》,作为能源领域中的前沿技术之一。超级电容器作为一种新型电化学储能单元,具有容量大、功率密度高、免维护、对环境无污染、循环寿命长、使用温度范围宽等优点,已在备用电源系统、便携式电子设备和电动汽车领域有广泛的应用。对于具有随机性和间歇性等特点的可再生能源发电,超级电容器应用于风力发电中可以提高风电场的运行安全。超级电容器的基本构造与应用组件如图1所示。按照储能机理,超级电容器可分为双电层电容器(electricdoublelayercapacitors,EDLCs)和法拉第准电容器(又叫赝电容器,pseudo-capacitors)。近年来,国内外对超级电容器储能技术的基础研究呈现出爆发式的增长,取得了很多新的突破。双电层电容器的储能机理是在大比表面积的碳材料电极和电解质界面吸附相反电荷的正负离子,电荷储存在界面双电层中,通过电化学极化进行可逆吸/脱附从而储存和释放能量。双电层电容器的电极主要为多孔碳材料,如活性炭、碳纳米管、介孔碳和碳化物衍生碳等。对于这些碳材料,决定双电层电容性能的因素主要有材料比表面积、电导率和孔隙率,但很少有碳电极材料可以在这三个方面均有优异的表现,因此,人们仍在不断研究碳基双电层电容器材料。赝电容器储能机理则是在具有氧化还原活性的电极表面,通过电极和电解质之间发生快速可逆的氧化还原反应进行能量储存和释放。这类电容器的电极材料主要有表面含有氧化还原活性位的材料,如导电聚合物、金属氧化物或金属氢氧化物。相比于双电层电容器,赝电容器的容量更大,但由于材料的导电性能较差,材料发生氧化还原反应时结构容易被破坏,因此能量密度和循环性能相对较差。为进一步提高超级电容器的能量密度,近年来开发出了混合超级电容器,又称“不对称超级电容器”。其中,一极采用具有氧化还原活性的电极材料通过电化学反应来储存和转化能量,另一极则采用碳材料通过双电层来储存能量。在混合型超级电容器中,能量储存的过程仍主要发生在电极表面,电极材料的比电容、导电性、比表面积和结构稳定性是混合型超级电容器能量储存和转化性能的决定因素。因此,为了提高能量密度和功率密度,无论是双电层超级电容器、法拉第准电容器,还是混合超级电容器,其电极材料必须具有比表面积大、电导率高和结构稳定的特性。石墨烯是一种由碳原子构成的单层片状结构碳材料,具有很大的比表面积(2675m2/g)、优异的电子导电性和导热性、很高的力学强度,符合高能量密度和高功率密度的超级电容器对电极材料的要求,是理想的超级电容器电极材料。石墨烯在超级电容器中的应用基础研究结果层出不穷。通过不同的合成与制备过程将石墨烯与其它材料构成复合电极材料,分别应用于双电层电容器、法拉第准电容器或混合型超级电容器。本文对近年来石墨烯基电极材料在三种不同类型超级电容器中的应用研究综述如下。1石墨烯基双电层电容器石墨烯具有优异的导电性、柔韧性、力学性能和很大的比表面积,自身可作为双电层超级电容器的电极材料。但无论是石墨烯、氧化石墨烯(GO)还是还原氧化石墨烯(RGO),它们在制备过程中均容易发生堆叠,影响石墨烯材料在电解质中的分散性和表面可浸润性,降低了石墨烯材料的有效比表面积和电导率。因此,避免石墨烯堆叠是制备高能量密度和高功率密度石墨烯基超级电容器的技术难题之一。Zhang等将各种表面活性剂,如四丁基氢氧化铵、十六烷基三甲基溴化铵、十二烷基苯磺酸钠等嵌入到氧化石墨烯片中,缓解氧化石墨烯在还原过程中的堆叠现象,使表面活性剂有效地存在于石墨烯和氧化石墨烯片中,促进了材料表面的浸润性,使材料能够很好地分散,提高了材料的比容量。研究结果表明,在2mol/L的H2SO4水溶液中,采用四丁基氢氧化铵作为表面活性剂制备的电极材料在1A/g电流密度下的比容量达到194F/g。Yoon等将己烷作为反溶剂物质加入到氧化石墨烯片的乙醇溶液中,制备得到不堆叠的褶皱氧化石墨烯片和还原氧化石墨烯片,有效地提高了还原氧化石墨烯的比表面积和孔隙率,分别为1435.4m2/g和4.1cm3/g,显著提升了该材料作为双电层电容器电极的性能。在6.0mol/L的KOH水溶液中、1A/g的电流密度下,比容量达236F/g;在30A/g的电流密度下,比容量仍然达到171.2F/g。Wang等将柔性石墨烯纸与炭黑纳米粒子通过普通的真空抽滤方法制备了复合电极材料,由于炭黑纳米粒子的存在,有效缓解了抽滤过程中石墨烯自发的堆叠过程,使制备的复合材料电化学性能超过了纯石墨烯纸的7倍,其最大的能量密度可达26W·h/kg,功率密度达5.1kW/kg。石墨烯层间距的控制对于避免石墨烯片层的堆叠、充分发挥石墨烯优异结构特性与电化学性能具有重要作用。Hantel等通过控制真空热还原的加热速度和还原温度,获得不同层间距的石墨烯和含不同氧官能团的石墨烯,并将其用作超级电容器的电极材料。研究发现,其电极比电容与石墨烯的层间距、石墨烯上的含氧官能团和使用的电解质均有很大的关系,当层间距为0.43nm,己腈作为溶剂时,其比电容达到了220F/g,组成对称超级电容器时其比电容达到了195F/g。课题组成员等利用化学转化石墨烯在水溶液中的高分散性,采用过滤的方法在滤膜和溶液界面可控制备了石墨烯片层定向分布的化学转换石墨烯水凝胶(chemicallyconvertedgraphene,CCG),获得了石墨烯片层之间π—π吸引力和溶剂化的排斥力之间的平衡点,具有良好的力学强度,可以直接作为超级电容器的电极应用。在此基础上,为了确保实际应用中石墨烯电极内部的片层网络结构,采用毛细管压缩过程(capillarycompressionprocedure),以CCG为前驱体,先通过真空过滤形成CCG膜,再将CCG膜浸润在不同比例的挥发性/非挥发性物质混合溶液中,通过毛细压缩作用,非挥发性物质、硫酸或离子液体(EMIMBF4)与水置换进入石墨烯片层间形成液体介导的致密性石墨烯基薄膜(如EM-CCG)。由于进入石墨烯片层的离子液体与水/离子液体混合比例有关,不同EMIMBF4体积比将形成堆积密度和石墨烯片层间距不同的EM-CCG薄膜,其电导率及内阻也不相同,所制备EM-CCG薄膜基本形貌与性质。我们采用所制备的EM-CCG薄膜作为对称电极,以EMIMBF4/AN为电解液,由于在电极和电解液中均存在EMIMBF4体,有效地解决了电极/电解液界面传输阻力,形成高的电导率和连续的离子传递网络,同时解决了石墨烯电极材料与电解液的浸润性问题。所组成的超级电容器开路电压达到3.5V,其最大能量密度达到60W·h/L,经过300h恒电压循环比电容保持率超过95%,循环性能优异。该研究为石墨烯基电极材料及电容系统制备过程放大奠定了良好的基础,相关结果在美国Science杂志上发表。各种堆积密CCG/EMIMBF4薄膜电极在不同电流密度下对应的体积比电容保持率变化曲线及充放电特征曲线。除了避免石墨烯材料的堆叠外,要制备高性能石墨烯基超级电容器,如何实现孔隙率高、致密性好、有效比表面积大和离子迁移电阻低是另一关键问题。Wang等制备了兼具多孔分层结构、高导电性的内在网络和杂环原子掺杂的石墨烯电极,在80A/g的电流密度下,其能量密度达322W·h/kg,功率密度达116kW/kg,充放电循环3000次后几乎没有递减。Luan等通过石墨烯与乙二胺联氨还原形成了电导率高、比表面积大和3D结构稳定的氧化石墨烯气凝胶,该气凝胶电导率达到1351S/m,比表面积为745m2/g,断裂强度达到10.3MPa,比电容达到232F/g。2石墨烯基法拉第准电容器石墨烯虽然可以单独作为超级电容器电极材料,但其理论比容量仅有329F/g,限制了该材料的大规模应用。如何既利用石墨烯优异的性能又突破石墨烯的理论比容量是石墨烯基电极材料的应用难题。通过对石墨烯进行官能团修饰改性以及制备石墨烯基复合电极材料,构建法拉第准电容器已经成为该领域研究热点之一。2.1官能团修饰石墨烯基电极Khanra等在含有9-蒽羧酸的溶液中通过电化学脱离的方法一步制备了蒽羧酸修饰的石墨烯,由于蒽羧酸官能团的赝电容特性,蒽羧酸修饰石墨烯作为超级电容器电极材料时,在1mol/L的H2SO4溶液中其最大比容量达到577F/g,经过1000次充放电后,比容量保持率为83.4%。Ghosh等制备了1-芘羧酸修饰的石墨烯,在6mol/L的KOH水溶液中,其比电容达到200F/g,远大于没有修饰的石墨烯比电容(30F/g)。通过苯并唑和苯并咪唑接枝的石墨烯,在石墨烯的官能团反应中引入了环状反应,有效地缓解了石墨烯片的堆叠反应,所制得的修饰石墨烯呈现皱状和卷曲状形貌,当作为超级电容器电极时,以1mol/L的H2SO4水溶液为电解质,在0.1A/g的电流密度下,苯并唑修饰石墨烯比电容达到730F/g,苯并咪唑修饰石墨烯比电容达到781F/g。氮掺杂石墨烯对其电容性能也有很大的提升。利用尿素作为氮源,通过微波法合成了高