D类音频功率放大器(ClassDAudioPowerAmplifier)
近二十年来电子学课本上所讨论的放大器偏压(Bias)分类不外乎A类、B类、
C类等放大电路,而讨论音频功率放大器仅强调A类、B类、AB类而却把D类
放大器给忘掉了,事实上D类放大器早在1958年已被提出(注一),甚至还有E
类、F类、G类、H类及S类等(注二),只是这些类型的电路与D类很接近,
运
用机会低,所以也就很少被提及。
音频功率放大器最大目的在提供喇叭得到最大功率输出,而卫衍生与电源
所供给功率不对等的关系,即所谓功率放大器的效率(输出功率与输入功率之比)
如表一所示:
偏压分类A类AB类B类D类
理想效率25%
介于A与B类之间78.5%100%
随着轻、薄、短、小手持电子装置的发展,诸如手机、MP3、PDA、IPOD
及LCDTV…数位家庭等,寻求一个省电的高效率音频功率放大器是必然的。因
此最近几年音频功率放大器由AB类功率放大器转以D类功率放大器为主流。如
图1所示(注三),在实际应
用上D类放大效率可达90%以上远超过效率50%的
AB类放大。所以D类放大的晶体管散热可大大的缩小,很适合应用于小型化的
电子产品。表一各類功率放大器的效率比
圖1D類及AB類效率比A类放大器(又称甲类放大器)的特点是不论是否输入信号,其输出电路恒有电流流
通,而且这种放大器通常是在特性曲线的线性范围内操作,如图2所示,以求放大后的
信号不失真。所以它的优点,是失真度小,信号越小传真度越高,最大的缺点是“功率
效益”(PowerEfficiency)低,最大只有25%,不输入信号时丝毫不降低消耗功率,
极不适合做功率放大。但因其高传真度,部分高级音响器材仍采用A类放大器。
图1
图2(a)、(b)皆属A类放大器,设计时让V
CE=1/2V
CC,以求最大不失真范围。注意到V
i
不输入时仍有0.5V
CC/R
L的电流流过晶体管,所以晶体管需要良好的散热环境。由于“共
集极”组态(图2(a)CommonCollector组态又称“射极跟随器”)转移特性曲线较“共
射极”组态(图2(b)CommonEmitter组态)有较佳的线性度(亦即失真较低)及较低
的输出组抗,因此,同属于A类放大器,射级随耦器却较常被当成输出级使用(“共射
级”组态较常被当成“驱动级”使用)。a
b
图2A类放大器
图3变压器耦合A类放大器
图4变压器耦合A类放大器的直流负载特性类功率放大器(乙类功率放大器)是工作点在特性线极端处的一种放大器,如图1所示。当没有信号输入时,输出端几
乎不消耗功率。所以,若将上图的左图V
BB拿掉,则根据定义,这种零偏压的电路就是一种B类放大器。然而,由于它
的静态点在(V
CC,0)处,因此,对于一个正弦波输入信号,它的输出端波形只剩半个周期是可以预期的。
图1B类功率放大器电路图
解决上述问题的方法,是将另一半周期的信号以一PNP型BJT与原射级跟随器相接,形成所谓的“互补式射级跟随
器”(ComplementaryEmitterFollower),又称为“B类推挽式放大器”(ClassBPush-PullAmplifier),如图1
所示。其动作原理,在V
i的正半周其间,Q1导通且Q2截止,所以,形成图2的输出端正半周正弦波;同理,当V
i为
负半周时,Q1截止而Q2导通,结果形成输出端负半周正弦波,如图2虚线部分所示。
图2B类功率放大器特性图由于B类推挽式放大器在无输入信号时不消耗功率,因此它较A类放大器有更高的最大功率效益(可达78%)。然而
由于推挽式放大器的信号振幅范围有一段是在特性线的非线性区域上,因此导致严重的失真,如2所示,这种失真我们
称它做“交越失真”(Cross-OverDistortion)。为了改善这种情形,所以有了AB类放大器,见下篇。
图3B类双端推挽放大器
图4交流信号输入示意图
图5集极电流的变化情形
AB类功率放大器(又称-甲乙类功率放大器)(ClassABAmplifier)
前面提到的B类推挽式放大器的交越失真,是由于信号大小在-0.6V i<0.6V之间 时,Q1、Q2皆无法导通所引起的,因此,如果我们在Q1及Q2的V BE之间加上两个0.6V 的电池,使输入信号在±0.6V之间大小时,Q1、Q2也可以导通(彷佛一个A类放大器 有加上V BB偏压一般),以降低失真,这种情形,就是AB类放大器,如图1所示。 图1AB类放大器 AB类放大器所产生的失真虽然比B类放大器小,但这项改进所付出的代价是待命功 率的浪费及功率效率的损失。 G类放大器一般用于高频电路,这里不再敷述。 图2 (a)B类放大器的交越失真图 2(b)AB类放大器消除交越失真的情形 图3变压器耦合AB类推挽放大器 图4AB类放大器对于交叉失真的改善情形 各种类型放大器优缺点比较: A类放大器B类放大器AB类放大器C类放大器 工作点位置负载线中点负载线截止点负载线中点与截止 点之间负载线截止点以下 的区域 导通角度 θ=360°θ=180°180°<θ<360°0°<θ<180° 失真度失真最小失真度略高于AB 类,有交叉失真可消除交叉失真失真度最大,有截波 失真 功率转移效率效率最低,在50% 以下效率约为50%至 78.5%效率略低于B类效率最高,在85% 以上 主要用途失真度低的小功率 放大器大功率放大器一般的音响扩大机射频电路与倍频器三极管Hi-Fi放大器的功率级大部分使用B类SEPP.OTL功率放大电路。因为B 类放大电路功率较高,最高达78.5%,除非是发烧级的音响,为求完美的不失真 才会用A类。就三极管的散热以及电源电路的容量,B类都比A类好很多。PP 电路中虽然有输出电路产生的偶次高谐波可互相抵销的优点,但实际上,主放大 器推动PP电路中的A类驱动级就会产生二次高谐波,因此高谐波还是很多。不 过,B类PP电路为减少交叉失真,须特别注意偏压的稳定。以下介绍几个代表 性的B类SEPP.OTL电路 图a半对称互补OTL放大电路 图b全对称互补OTL放大电路 图一输入变压器式功放电路 输入变压器式SEPP电路如图一,利用输入变压器进行相位反转作用。线 路简单而中心电压又稳定,如果使用两电源方式,可简单剪掉输出电容器。又, 输出短路时,不容易流出大电流,对过载引起的破坏,有很大的防止作用。不过 因为输入变压器的影响,不能有较深的负反馈,所以不能获得较低的失真,在高 频特性及失真会显著恶化是主要缺点。 CE分割方式 图二CE分割方式 如图二所示,利用三极管Q1集电极与发射极之相位相反进 行反向的方式,与真空管的PK分割相同。因为可以由NPN型三极管构成,所以 很容易找到特性整齐的三极管。但是,因为有电路比较复杂,需用的交连电容多, 低频特性不好,所以一直不能成为主流的电路。 互补方式 图三互补方式 如图三所示,利用NPN与PNP型三极管之组合作为相位相反兼驱动的电路,三极管放大器几乎都使用这种方式。因为 电路直接交连,相位偏差少,且可以有较大的负反馈,所以容易作成超低失真度的放大器。可以获得Intermodulation少,输 出组抗低等优点。然而,过载时有非常大的电流经过输出三极管,因此必须有适当的保护电路。从防止被破坏来讲,这点很不 利。此外,输出三极管之偏压须经过稳定化,对于电源电压之变动及温度变化须做适当补偿。输出三极管虽然亦有采用NPN和 PNP型组合的纯互补电路,但是大输出的PNP硅晶体现在很贵,不容易买到,所以较少采用。利用硅NPN及锗PNP三极管组 合的纯互补电路,上下对称特性虽然较差,但因为线路单纯,所以最常被使用。现在就图三的电路图作说明。 图三是互补式放大器第二级后的电路。Q1为A类驱动级,利用VR1偏压调整,改变Q1的集电极电流,将中心电压 调整到Vcc的1/2。因为利用R2从Q1的集电极(约与中间电压同电位)进行DC负反馈加以稳定化,因此只要电路常数选择 的当,中间电压几乎没有调整的必要。二极管与VR2用来改变Q2与Q3的基极偏压,进而调整Q4及Q5的无信号电流。无 信号电流在Pc100W级的三极管以30~50mA,Pc25W级的三极管以20~30Am最恰当。Q3,Q4负责信号的上半部, Q2,Q5负责信号的下半部,分别交替进行动作。因此,无信号电流如果太少,即出现跨越失真,上下信号之接和部分变形。 无信号电流如过多,则损失增多,产生热的问题,因此须利用温度补偿使其保持一定大小。温度补偿的方法等一下会提到。直接交连双电源无电容式方式 图四 交连双电源无电容式方式 从图四可知,将互补式电路的初级改成差动放大,使电源电压即使有变 动,中间电压亦能保持零电位的电路,就是直接交连二晶体无电容方式。因为没有输出电容, 所以低频部分阻尼特性非常好,即使1KHz附近的波形,亦可完整而极少失真的再现。但是, 加上电源时,中间电压的稳定度会有问题,Q1,Q2的差动放大级与Q3的A类驱动级,电路 常数应适当选择,使加上电源时,尽可能由低电压开始动作。 负反馈与阻尼因数 放大器的阻尼因数以DF=RL/Zout表示,因此,输出阻抗越低的放大器DF越好,不加负反馈 的互补电路,输出阻抗为1~5Ω。使用complementary电路放大器,输出阻抗很容易做到0.1Ω 以下。 冲击噪声防止电路 OTL电路当电源加入时,输出电容瞬间被充电,因此一下子会有很大的冲击。防止这个冲击 的方法,就是使中间电压慢慢上升,图四即为此种电路的例子。 温度补偿方式 使用三极管的功率放大器为防止热失控,须进行温度补偿。顺便补充一下前面说过的互补式