当前位置:文档之家› (完整版)基于ARM的嵌入式TCPIP协议的实现

(完整版)基于ARM的嵌入式TCPIP协议的实现

嵌入式系统中网络通信协议的选择

一、引言

一个现代化工业企业的网络环境一般可分为四个层次:

·Internet:实现企业之间的信息交流;

·Intranet:实现企业内部管理、财务、办公及人事等的信息化;

·Infranet:实现工业企业现场生产设备级的综合管理、调度与监控等;

·Embedded Network :嵌入式网络。实现生产设备内部多个分布式子系统之间的实时通信。

Internet、Intranet都基于TCP/IP协议簇,Intranet是面向广域网的Internet在企业内部局域网上的延伸。 Infranet的建设目前主要采用各种现场总线协议,如ProfiBus、Lonwork、CAN等。

随着社会的进步和技术的发展,现代机电控制系统往往包括若干个子系统,每个子系统既自成一体,拥有自己独立的CPU,又与其它子系统紧密协调。嵌入式网络就是实现子系统间相互通信的手段。

二、对嵌入式网络的特殊要求

嵌入式网络通常应用在环境比较恶劣的工业生产现场,因此在以下几个方面有其自身独特的要求:

1. 实时性:生产设备内部多个分布式子系统信息耦合通常比较紧密,对实时性要求很高,这就要求所用的网络协议具有可确定的实时性能,即极坏情况下的响应时间是可确定的;另外在网络节点数比较多,或者有些节点对实时响应要求特别高时,网络协议还应支持优先级调度,以提高时间紧迫型任务的信息传输可确定性。

2. 可靠性:嵌入式网络本身的可靠性直接影响设备的有效作业率、成品率和生产效率,要求网络能动态增加/删除节点;生产现场比较恶劣的电磁环境要求嵌入式网络本身具有很强的抗干扰能力、检错和纠错能力以及快速恢复能力;

3. 通信效率:嵌入式网络通信的特点之一是子系统之间通信非常频繁,但每次通信的信息长度很短,因此要求嵌入式网络协议尽量采用短帧结构,且帧头和帧尾尽可能短,从而提高通信效率和带宽的利用率;

4. 双重混合支持:不同工作环境的巨大差异决定了嵌入式网络应具有灵活的介质访问协议,不但支持多种介质(双绞线、同轴电缆、光缆),而且支持混合拓扑结构(星型、环型、总线型),有时甚至要求同一个嵌入式网络能同时使用多种介质和多种网络拓扑。如在噪声环境中,系统中一部分连接需要使用光缆,其它部分则使用双绞线或同轴电缆。同轴电缆适于采用总线拓扑,而光纤则更适于环型或星型拓扑,这就要求网络协议具有双重混合支持。

5. 实现难度和造价:嵌入式系统通常需要针对实际需求进行专门设计与制造,这就要求其中的网络系统软硬件容易实现,并与子系统控制部分集成,有关元器件商品化程度高,造价较低。

6. 开放性:嵌入式网络必需具有良好的开放性,一方面能通过企业Infranet连接到Intranet中,实现企业生产管理的管控一体化;另一方面应具有公开透明的开发界面,资料完备,实现系统硬件、软件的自主开发和集成。

此外,嵌入式网络系统必须配置灵活、维护简便。

通常,嵌入式网络就覆盖范围而言属于局域网。按照ISO/OSI的观点,TCP/IP协议簇位于网络层以上。显然,TCP/IP协议簇已经超出了嵌入式网络系统的范畴。嵌入式网络包括ISO/OSI七层模型中的物理层和数据链路层。数据链路层在具体实现上可划分成两个子层:介质访问控制子层(MAC子层)和逻辑链路控制子层(LLC子层)。MAC子层包括物理层接口硬件和实现介质访问协议的通信控制器;通常LLC子层由软件实现(用户自主开发)。因此,嵌入式系统设计中网络通信协议选择的核心是介质访问协议的选择。

三、常见介质访问协议的比较

1、面向链接的协议

面向链接的协议主要用在网络发展初期的主机–终端式网络中,如X.25和IBM的SNA 网络。其主要缺点是:1)节点之间采用串行连接方式,每个物理连接只支持两个节点,速度较低;2)物理上没有连接的节点之间的通信需要经过多个中间节点的多次传输;3)直接相连的节点间的通信是可确定的,而间接相连的节点间的通信则无法确定延时。因此,在局域网技术已非常成熟的今天,这类协议已很少应用。

2、轮询法

轮询法因其简单和实时性能可确定等特点而成为嵌入式网络常用协议之一。采用轮询法的协议,需指定一个主节点作为中央主机来定期轮询各个从节点,以便显式分配从节点访问共享介质的权力。这类协议的缺点是;1)轮询过程占用了宝贵的网络带宽,增加了网络负担;2)风险完全集中在主节点上,为避免因主节点失效而导致整个网络瘫痪,有时需设置多个主节点来提高系统的健壮性(如Profibus)。

3、CSMA/CD(带冲突检测的载波监听多路访问)

CSMA/CD有许多不同的实现版本,其核心思想是:一个节点只有确认网络空闲之后才能发送信息。如果多个节点几乎同时检测到网络空闲并发送信息,则产生冲突。检测到冲突的发送信息的节点必须采用某种算法(如回溯算法)来确定延时长短,延时结束后重复上述过程再试图发送。

CSMA/CD的优点是理论上能支持任意多的节点,且不需要预先分配节点位置,因此在办公环境中几乎占有绝对优势。但在CSMA/CD中冲突产生具有很大的随机性,在最坏情况下的响应延时不可确定,无法满足嵌入式网络最基本的实时性要求。

4、TDMA(时分多路访问)

TDMA已大量应用于移动通信领域(如GSM、DAMPS),但也可用于局域网。TDMA的特点是:每轮信息传输前,网络中的主节点先广播一个帧同步信号以同步各从节点的时钟,在帧同步信号之后,每个从节点在各自所分配的时间片内发送数据。TDMA的缺点是:1)每个从节点必须有一个稳定的基准时间以确定时间片,因此从节点比较复杂,造价较高;2)TDMA 的主流应用领域依然是无线移动通信领域,用于嵌入式网络的TDMA无论在相关软硬件技术支持和市场认同方面都非常欠缺。

5、令牌环

在令牌环网中,节点之间使用端到端的连接,所有节点在物理上组成一个环型结构。

一组特殊的脉冲编码序列,即令牌,沿着环从一个节点向其物理邻居节点传递。一个节点获得令牌后,如无信息要发送,则将令牌继续传递给下一个邻居,否则首先停止令牌循环,然后沿着环发送它的信息,最后继续令牌传递。令牌环网的优点是:1)在实时性方面是可确定的。因为容易计算出最坏情况下节点等待令牌的时间;2)令牌传递占用的网络带宽极小,带宽利用率很高,具有强大的吞吐能力。但这种协议在具体实现时为确保可靠性必须付出较大的代价:1)为了避免因电缆断裂和节点失效导致整个网络瘫痪,常采用双环结构(如FDDI)和失效节点自动旁路措施,导致实施成本增加;2)为了能立即检测到令牌是否意外丢失,不得不增加该协议实施的复杂性。

6、令牌总线

令牌总线的基本原理与令牌环网相似。但在令牌总线中,网络上所有节点组成一个虚拟环,而非物理环。令牌在虚拟环中从一个节点传向其逻辑邻居节点。只有持有令牌的节点才能访问网络。如同令牌环一样,令牌总线具有非常高的网络带宽利用率、很高的吞吐能力和良好的可确定性。另外令牌总线中各节点有相同的优先级;令牌总线中的电缆断裂并不一定导致整个网络瘫痪;网络运行过程中可动态增加或关闭节点,因此节点失误一般不会导致整个网络瘫痪(当然在网络启动、增加 /删除节点时会导致逻辑环重构,以便每个节点确定自己的逻辑邻居,这会有点费时);总线拓补结构还非常适合于制造设备。因此,令牌总线协议被MAP (Manufacturing Automation Protocol,制造自动化协议)、ARCnet (Attached Resource Computer Network)采用,在过程自动化控制等嵌入式场合广泛应用。

7、CSMA/CA (带冲突避免的载波监听多路访问)

CSMA/CD在节点数量不多、传输信息量较少时效率很高;基于令牌的协议具有良好的实时性和吞吐能力。人们已经开发出一种能综合以上两者优点的混合协议—CSMA/CA。CSMA/CA的本质是利用竞争时间片来避免冲突。其基本原理是:如同CSMA/CD一样,节点必须检测到网络空闲之后才能发送信息;如果有两个或更多的节点发生冲突,便在网络上启动一个阻塞信号通知所有冲突节点,同步节点时钟,启动竞争时间片(竞争时间片跟随在阻塞信号之后,其长度比沿网络环

路传输时延稍长));通常,每一个竞争时间片均指定给特定的节点,每个节点在其对应的时间片内如有信息发送则可以启动传输;其它节点检测到信息传输后,停止时间片的推进,直到传输结束所有节点才恢复推进时间片;当所有时间片都失去作用时,网络进入空闲状态。为确保公平性和可确定性,在每次传输之后,时间片要循环。此外,优先时间片(the priority slots)优先于普通时间片的推进,能支持高优先级信息的全局优先传输。

CSMA/CA 协议在具体实施中主要有两个变种:一是RCSMA(Reservation CSMA),其特点是时间片数等于节点数。RCSMA在各种传输条件下都能有效工作,但显然不适于节点较多的网络;在另一个变种中,时间片数少于节点数,且根据冲突最少的原则随机调整时间片的分配,根据所预测的网络流量动态地改变时间片数;如Echelon公司推出的广泛应用于智能大厦领域的 Lonwork标准。

另外,在CSMA/CA中,并非必需采用硬件来避免冲突,还可以通过软手段来实现,例如发送使时间片在没有网络传输的情况下仍然保持活动的哑信息。

四、结论

介质访问协议是嵌入式网络协议选择的核心。尽管没有哪一种协议对各种应用场合都是十全十美的,但通过对上述各种介质访问协议的分析和比较不难发现:令牌环、令牌总线、CSMA/CA比较适合于嵌入式网络。但令牌环的具体实施比较复杂、成本较高,其应用越来越少。读者可针对具体应用需求,选用令牌总线(如ARCnet)或CSMA/CA。

基于ARM的嵌入式TCP/IP协议的实现

[日期:2008-8-12 13:55:00] 作者:未知来源:在网络应用日益普遍的今天,越来越多的嵌入式设备实现Internet网络化。TCP/IP协议是一种目前被广泛采用的网络协议。嵌入式Internet的技术核心是在嵌入式系统中部分或完整地实现TCP/IP协议。由于TCP/IP协议比较复杂,而目前嵌入式系统中大量应用低速处理器,受内存和速度限制,有必要将TCP/IP协议简化。

1TCP/IP协议的实现

嵌入式TCP/IP协议一般实现:ARP/RARP、IP、ICMP、TCP、UDP、HTTP、SMTP、FTP、TELNET等协议,协议处理的主要流程如图1所示。

点击看原图

1.1TCP协议的实现

工业控制领域传输层采用TCP协议、不用UDP协议,是考虑到实时监控系统中传输量并不大,而可靠性要求

较高。TCP协议是面向连接的、端对端的可靠通信协议。它采用了许多机制来保证可靠传输,应用于嵌入式系统显得过于复杂。

TCP协议数据传输可分为三个阶段:建立连接、传输数据和断开连接。它的实现过程可以用状态机来描述。建立连接有两种方法,即主动打开和被动打开。服务器端是一种被动打开,它一直在侦听连接请求;而客户端是一种主动打开,它发送连接请求以建立连接。研究发现,如果TCP层的上层实现服务器端的应用,可以将标准TCP状态机建立连接过程中客户端建立连接的状态机部分简化掉。同理,如果应用是基于客户端的,可以将服务器端建立连接的状态机部分简化掉。断开连接有两种方式:一是主动断开连接;另一是被动断开连接。被动断开连接的处理较为简单,但标准TCP协议的主动断开连接的状态机部分过于复杂。经过实验发现,在需要主动断开连接的时候,发送一个Fin数据报;接收到对Fin数据报的确认后,再发送一个Reset数据报,即可顺利完成一次主动断开连接。

标准的TCP协议使用慢启动的滑动窗口机制。滑动窗口是一种在流量控制和网络传输效率之间折中的方案。它允许发送方在等待一个确认之前发送多个窗口,其确认是一种批量的确认。研究滑动窗口协议发现,滑动窗口的一个极限情况,是只使用单个窗口,就变成了一种简单确认的处理方法。使用该方法后,所有的处理只是对单个数据报的发送和确认,节约了系统的资源,也使维护更加方便。为了协议的兼容性,需要通信的另一方也使用简单确认方法。因为如果对方使用较大的窗口,就可能造成处理器被淹没。这个问题可以通过设置待发送数据报的TCP头部的Windows字段的大小解决。

在上述基础上,简化实现TCP协议的流程图如图2所示。其中“不同状态的相应处理”指根据接收到的TCP报文准备待发送数据报并将其发送到以太网上。这部分根据TCP所处的不同状态,所做的处理是不一样的。

1.2IP协议

IP协议是TCP/IP的基础,为不同网络的主机之间发送数据报的操作序列提供无连接服务。通过在数据报前添加IP协议头,使每个数据报具有寻址能力。嵌入式系统只把IP作为传输工具,进行简化以完成主要的操作。得到IP包后,检验IP头部的版本、目的地址、校验和正确否,解析出协议类型字段,由此交给相应的高层协议处理。发送IP包时,将缓冲区内的源地址与目的地址互换,设置校验和,然后交给下层协议处理。不符合要求,则将此包丢弃。IP包最大可以为65KB,可以分段传输,而在嵌入式系统里根本无法容纳如此大的数据包,因此一般不支持分段传输。所以限制MCU发送和接收数据包的方式以避免分段传输,从而减少程序复杂度。

1.3其它协议

ARP协议为32位IP地址到对应的48位以太网地址之间提供动态映射。嵌入式系统中仅响应ARP请求,发送ARP回答包。请求者广播出包含ARP请求的以太帧、目的以太网地址为全1的广播地址。本机收到后,由目的IP地址发现自己是目的主机,发送一个ARP回答。ICMP通过IP协议传输其报文。IP协议是无连接的,它无法将报文和错误信息传到最初的主机,ICMP将状态信息和错误信息发送到发报文的主机。

2前端设备的系统设计

TCP/IP协议扩展到工业控制级,将企业内部计算机网络应用于工业现场实时信息的发布和显示,通过Internet浏览器对现场工业信息进行动态监视。下面是笔者在某公司一分布式监控系统中的应用实例。基于TCP/IP协议的前端设备系统软件结构如图3。前端嵌入式设备处理器是Samsung公司的S3C4510

B(ARM核)。该芯片是用在基于以太网系统的高性价比、高性能的16/32位RISC微控制器。通信部分采用BNC接口方式,信号输出经耦合隔离变压器由RJ45接头联入集线器,此外还设计了液晶显示和键盘输入当地接口功能。

在TCP/IP协议中多处用到超时和重发机制。这种机制对于确保两个或多个彼此独立的通信结点从通信错误或故障状态自动恢复到正常状态是非常有效的,但也增加了软件结构的复杂性。因为对超时的处理通常独立于正常程序流程,也就是与正常的程序流程异步。要实现的TCP/IP协议软件中有四处要用到定时器:第一是在ARP高速缓存的维护中,被添加到ARP高速缓存中的表项在一段时间后要置为无效;第二是在等待对发出的ARP请求返回响应时,可能会在指定的超时时间内还未收到返回的响应;第三是在IP组装收到分片时,由于部分分片在一定时间内没有收到而丢弃整个IP包;第四是在TCP等待接收方对数据段的确认时。如果在指定时间内还未收到对某个数据段的确认,需重新发送。从上述可见,要实现的定时器具备以下特点:

·对定时的精度要求都不是很高,基本都是秒级的精度。这样,完全可以稍滞后一些来处理定时器超时,不把超时处理放在时钟中断处理程序中。·对同一类超时处理可以由同一处理程序来完成,只是传入到相应的处理程序中的参数不同而已。例如一个ARP高速缓存中的表项超时时,需要将其置为无效,可以统一用一个处理程序,参数中放入相应的表项地址即可。

首先,定义一定时器的数据结构,如图4所示。每一类超时都是由一个超时控制块和其所属的一个由超时事件项组成的链表管理。整个链表按超时事件将要发生的时间顺序排列,先发生的超时事件排列在前。超时控制块中的head_ptr用以指向一个超时事件项链表的首项;timeout_process是超时事件发生时处理程序的入口地址。在每个超时事件项中,next_ptr指向链表中的下一项;relative_time是本表项的超时事件相对于上一表项的超时事件发生的相对时间。所以某个表项表示的超时事件距离当前的时间是它以前所

有表项(包括自身)中的relative_time的和。relative_time的基本单位是granularity。

定时器任务使用一个信号量作同步。信号量有两个变量:count和waiting_task。count对事件计数,当count大于0时,表示有count个事件发生并等待处理;当count小于0时,表示有某个任务在等待事件的发生,此时waitint_task保存相应任务控制块的地址。信号量有两个操作:sem_up和sem_down。sem_up首先使count加1,然后看count是否为0,若为0表示有任务在等待,通过waiting_task中记录的任务控制块的地址把等待任务的状态设为就绪,否则返回。sem_down首先使count减1然后看count是否小于0,若小于0会使当前任务成为等待状态并引发任务管理器对任务的调度,否则返回。

每当时钟中断服务程序计数到granularity个时钟中断,给定时器任务使用的信号灯作sem_up操作。当定时器任务被调度执行时,它遍历每一个超时控制块,对每一个超时控制块作如图5所示的处理,最后对信号灯调用sem_down。

基于ARM的嵌入式TCP/ IP协议栈的实现

IP协议栈的实现, ARM, TCP, 嵌入式, 协议

随着嵌入式系统与网络的日益结合,越来越多的嵌入式设备实现Internet网络化。在嵌入式实时操作系统中引入T CP/ IP协议栈,以支持嵌入式设备接入网络,已成为嵌入式领域重要的研究方向。NC/ OS -II是一种占先式、多任务、移植性强的免费公开源代码的实时操作系统,然而他只是一个实时的任务调度及通信内核,系统内核木身并没有集成T CP/ IP协议栈,所以不能满足嵌入式设备联网的需要。为了使基于ARM和uC/OS -II的嵌入式系统能实现网络化,必须使用外挂的T CP/ IP协议栈或者根据硬件平台和实际应用重新设计实现新的协议栈。由于T CP/IP协议比较复杂,而目前嵌入式系统中大量应用低速处

理器,受内存和速度限制,实现完整的T CP/ IP协议较为困难,有必要将T CP/ IP协议简化。

1 TCP/ IP协议分析

计算机网络是一个层次结构,其各层及其协议的集合,称为网络的体系结构。Internet 上使用的参考体系是T CP/ IP体系结构,结构如图1所示,他包括应用层、传输层、网络层和卞机到网络接口4层。

最底层为卞机到网络接口层,他包括多种网络协议,

的数据报传送信息,并通过校验和来确保消息的正确性,但他没有流量控制,也不保证可行的、有序的传输。

第4层为应用层,包含所有应用协议如T elnet(远程登陆),FTP(文件传输),FFT P(普通文件传输协议),

SMTP(电子邮件),DNS(域名服务),HTTP(超文木传输}办议)等。

T CP/ IP的层次结构中,各层实现对等层之间通信协议,彼此是相互独立的,上层仅能通过接口知道卜层提供的服务,而不知道卜层的具体实现,因而用户数据是逐层

依次复制给卜层完成网络通信的。

2协议裁减方案

标准的T CP/ IP协议栈对计算机处理器、存储器要求比较高,然而,嵌入式系统的计算资源和存储资源都非常有限,在这些嵌入式系统中实现标准的T CP/ IP协议栈将占用大量系统资源,因此嵌入式T CP/ IP必须进行简化和优化,尽可能做到代码精简、降低存储开销。2. 1 IP协议

IP协议是T CP/ IP的基础,为不同网络的卞机之间发送数据报的操作序列提供无连接服务。通过在数据报前添加IP协议头,使每个数据报具有寻址能力。嵌入式系统只把IP作为传输工具,进行简化以完成卞要的操作。得到IP包后,检验IP头部的版木、目的地址、校验和正确否,解析出协议类型字段,由此交给相应的高层协议处理。发送IP包时,将缓冲区内的源地址与目的地址互换,设置校验和,

然后交给卜层协议处理。若不符合要求,则将此包丢弃。IP包最大可以为65 kB,可以分段传输,而在嵌入式系统里根木无法容纳如此大的数据包,因此一般不支持分段传输,对于分段的功能可以裁减不要。所以限制MCU发送和接收数据包的方式以避免分段传输,从而减少程序复杂度。

2.2 ICMP协议

ICMP协议用于报告在数据报过程中的错误,IP协议是无连接的,他无法将报文和错误信息传到最初的卞机,ICMP将状态信息和错误信息发送到发报文的卞机。因此予以采用。2. 3 T CP协议

在TCP协议中采用停止等待算法代替滑动窗口算法。这一方而是由于数据量小,对网络拥塞不会产生太大影响,从而可以裁减TCP的流量控制功能;另一方而则是因为数据量小时,采用停止等待算法的传输效率和滑动窗口算法的效率差不多,因此采用简单停止等待算法代替复杂的滑动窗口算法,不但减少了实现难度,提高了处理速度,同时取消了T CP发送缓存区和接收缓存区,从而减少了占用存储空间。

2. 4其他协议

ARP协议为32位IP地址到对应的48位以太网地址之间提供动态映射。嵌入式系统中仅响应ARP请求,发送ARP回答包。请求者广播出包含ARP请求的以太帧、目的以太网地址为全1的广播地址。木机收到后,由目的IP地址发现自己是目的卞机,发送一个ARP回答。U DP协议是一种不可靠的传输协议,目前多用于语音和视频传输等流媒体应用中,考虑到嵌入式设备在工业控制等专用领域中在网络传输的是重要的数据和命令,其传输的可行性可以通过TCP协议来保证,因此裁掉U DP协议。

3嵌入式TCP/ IP协议栈的实现

3. 1以太网接口协议

该层实现了T CP/ IP协议栈与底层网络驭动程序模块的隔离,使得T CP/ IP协议栈的实现与底层硬件无关。一方而使得系统移植到其他硬件平台时只需对底层的中断控制系统进行修改而不需对T CP/ IP协议栈进行修改,减少移植工作量;另一方而使得系统增加网络新功能时只需

对T CP/ IP协议栈进行修改而不需对底层的中断控制系统进行修改。该模块包含以太网初始化、数据包的接收和发送3个函数。

(1) void EtherDevInit()

以太网初始化函数,负责实现网络接口层、以及卜层的物理设备-`3}动程序的初始化,数据结构的初始化。

(2) BOOL EtherOutput()

以太网发送函数,根据上层类型、源MAC地址及目的

MAC地址组成以太网发送数据包,调用网卡发送函数将

该数据包发送到网卡控制芯片中。

(3) void EtherInput()

以太网接收函数,根据帧类型字段选择将该帧交给哪

个上层协议模块处理。

3. 2 ARP协议

以太网的数据通信依赖于硬件MAC地址,因而需要系统实现IP地址到MAC地址的转换功能。ARP协议使得网络上的每个卞机动态地建立一张IP地址和链路地址之间的映射表。在协议中使用结构体SA RPEntry来保存地址映射。

基于ARM的嵌入式TCP/IP协议的实现方法

2010-03-19 11:35:07 作者:佚名来源:浏览次数:90

分析嵌入式TCP/IP协议的选取原则,采用ARM芯片和网络接口控制芯片设计以太网接口,介绍ARM芯片对网络接口控制芯片的控制过程和TCP/IP协议栈处理数据包的流程,完成嵌入式TCP/IP系统的开发。该系统可以将数据按网

分析嵌入式TCP/IP协议的选取原则,采用ARM芯片和网络接口控制芯片设计以太网接口,介绍ARM芯片对网络接口控制芯片的控制过程和TCP/IP协议栈处理数据包的流程,完成嵌入式TCP/IP系统的开发。该系统可以将数据按网络协议处理,实现数据的以太网传输。其是一套基于嵌入式实时操作系统的嵌入式网络软件开发平台,即在μC/OS—II的平台上,实现ARM微处理器的TCP/IP协议,在此平台之上,可以方便地进行嵌入式应用系统的开发a

关键词:ARM;嵌入式系统;TCP/IP;以太网

0 引言

以太网具有通用性强、技术成熟、带宽迅速增加等特性,工业控制领域出现嵌入式技术,尤其是ARM技术的发展和DSP在工业控制领域的广泛应用,利用嵌入式技术实现以太网通信已经不难见到。嵌入式实时操作系统接入网络后将使远程监测、远程控制、远程诊断和远程维护变得越来越容易。从根本上讲,嵌入式设备接入网络,当前基本采用基于TCP/IP的通信协议。该方案以LPC2210为核心元件研究基于ARM的嵌入式TCP/IP协议的实现的硬件电路,同时在μC/OS一Ⅱ平台上编写应用软件程序。下面对系统做详实的阐述,并重点介绍嵌入式实时操作系统μC/OS—II应用于TCP/IP时应进行合理的裁减。

1 系统硬件设计

基于ARM的嵌入式TCP/IP网络通信系统主要包括ARM芯片和以太网控制器等芯片组成的以太网接口、驱动软件和嵌入式TCP/IP协议栈。硬件原理图如图1所示。

该方案设计相对简单,硬件电路中采用的LPC2210是Philips公司推出的微处理器,带有16 KBRAM,76个通用I/O口,12个独立外部中断引脚,集成有8通道的10位A/D,能够基于芯片设计复杂的系统。虽然LPC2210具有较快的访问速度,但片内没有集成FLASH,所以这里扩展1片16 Mb FLASH SST39VFl60来保存用户程序。其架构满足μC/OS—II正常运行的基本要求。

RTL8019AS是台湾Realtek半导体公司生产的以太网控制器,其性能包括:支持EthernetII和IEEE802.3标准;支持8/16位数据总线;内置16 KWord的SRAM;全双工,收发同时达到10 Mb/s;支持BNC,AUI,UTP介质。RTLS019AS可提供100脚的TQFP封装,减少了PCB面积,更适合于嵌入式系统。HR901170A是汉仁电子有限公司生产的RJ45接口连接器(带网络变压器/滤波器),该连接器满足IEEES02.3和IEEE902.3ab标准,能够较好地抑制电磁干扰。通过HR901170A系统就可以连接到以太网上。

2 嵌入式协议的选择

TCP/IP协议是一组不同层次上的多个协议的组合,通常被认为是一个包含链路层、网络层、传输层和应用层的4层协议系统,如图2所示。嵌入式系统是为完成某种特定的功能而设计的专用系统。嵌入式系统不要求(也不可能)实现所有的TCP/IP协议,所以嵌入式TCP /IP是对TCP/IP协议族进行选择而形成的协议集合。

首先在链路层上,由于采用以太网的接入方式,系统必须实现IEEE802.3所规定的CDMA /CD(载波监听多路访问及冲突监测)协议,CDMA/CD协议不需用户实现,此协议只要采用通用的NIC(Network Interface Con—troller,网络接口控制)芯片就可支持。为了保证系

统在以太网中的通信,系统还需实现ARP应答协议,该协议用于将IP地址映射成以太网MAC 地址。ARP协议包括ARP请求和ARP响应两部分,系统与其他计算机通信,就必须要支持ARP 响应。ARP请求在本地建立了一个IP地址到MAC地址的映射,保证了对外通信的有的放矢。RARP(逆地址解析)协议主要用于解决如何从MAC地址得到IP地址,主要用于无盘工作站中。在网络层,由于系统要求能够在Internet中进行通信,因此系统要实现IP协议。在TCP/IP协议族中,网络层协议包括IP协议(网际协议)、ICMP协议(Internet控制报文协议)以及IGMP协议(Internet组管理协议)等。IP协议是TCP/IP族的核心协议,它使异构网络之间的通信成为可能。因此RTU等系统数据跨越不同的网络进行传输就必须要实现IP协议。ICMP中规定了多种协议类型和代码,如果完全地实现也要耗费不少的系统资源,该嵌入式系统中,在ICMP协议中能够测试网络的连通情况即可。

传输层主要是在2台主机之间提供端到端的通信。传输层有2种不相同的传输协议:TCP(传输控制协议)和UDP(用户数据报协议)。TCP是面向连接的,在不可靠的网络服务上提供端到端的可靠字节流。TCP协议设计了严格的3次建立连接握手过程、4次关闭连接握手过程以及捎带确认信息并通过滑动窗口进行流量控制的数据传输过程。UDP协议是不面向连接的,它只是简单地把数据报从一台主机发送到另一台主机,但并不保证该数据报能到达另一端,可靠性必须由应用层来提供。考虑到系统中数据传输质量,这里采用TCP协议。应用层协议主要是指用户进程。其包括:HTTP协议、FTP协议、POP3协议、SMTP协议、SNMP协议。

分析嵌入式TCP/IP协议的选取原则,采用ARM芯片和网络接口控制芯片设计以太网接口,介绍ARM芯片对网络接口控制芯片的控制过程和TCP/IP协议栈处理数据包的流程,完成嵌入式TCP/IP系统的开发。该系统可以将数据按网

3 系统软件设计

该TCP/IP网络通信系统为了具有较好的实时性和稳定性,采用μC/OS一Ⅱ设计系统软件。在μC/OS一Ⅱ平台上,软件设计工作主要包括:μC/OS一Ⅱ在LPC2210上的移植和TCP/IP协议在μC/OS一Ⅱ上的实现以及系统应用程序的编写。μC/OS一Ⅱ的移植工作主要集中在下面几个文件中:OS_CPU.H,OS_CPU_A.ASM,OS_CPU_C.C。另外,在INCLUDES.H 中必须包括LPC2210文件LPC2210.H;OS_CFG.H用于系统应用μC/OS一Ⅱ中的初始化配置。OS_CPU.H主要包括一些与处理器和编译器相关的常量和类型定义等,而且需注意

LPC2210的堆栈方向是由高到低,用OS_STK_GROWTH来设置堆栈的增长方向。因此将

OS_STK_GROWTH设为1。OS_CPU_A.ASM中需编写4个汇编语言函数:OS_TASK_SW(),

OS_IntCtxSw(),OSStartHighRdy()和OSTieklSR()。

以太网链路层遵循的IEEE802.3协议的CSMA/CD和CRC校验等功能由网络控制芯片Rtl8019AS完成,LPC2210芯片则完成其他TCP/IP协议的解释和执行。LPC2210控制RTL8019AS完成通信任务时,首先要对RTL8019AS复位,并对RTL8019As的寄存器进行初始化,确定发送和接收的条件,然后才能发送数据或接收数据。当一帧数据发送结束、接收到1帧数据或出错等事件发生时,RTL8019As向LPC2210申请中断,LPC2210响应中断后根据中断状态寄存器的内容进行相应的处理。

在LPC2210内部,ARM程序完成对数据的打包解包。系统复位后,系统首先发送ARP请求,建立地址映射,并内部中断进行定时更新。ARM芯片根据情况将采集或收集到数据按照TCP 协议或UDP协议格式打包,送入网卡芯片,由网卡芯片将数据输出到局域网中。ARM芯片对数据报进行分析,如果是ARP(物理地址解析)数据包,则程序转入ARP处理程序。如果是IP 数据包则进一步判断是哪个协议向IP传送数据。如果是ICMP协议,判断是否为Ping请求,是则应答,不是丢弃该数据包;如果是TCP或UDP协议,且端口正确则按相应的协议处理数据,端口不正确丢弃数据包。TCP/IP系统框图如图3所示。

TCP/IP在μC/OS一Ⅱ上的设计结束后,剩下的工作就是编写应用程序。将系统划分成若干个任务,每个任务对应一个独立的无限循环的主程序,完成一个特定的功能。为简化设计,应用程序采用静态优先级,即应用程序在执行的过程中各个任务优先级保持不变。

4 结语

基于ARM的嵌入式TCP/IP协议的设计方案,论述了软、硬件的设计方法和协议的选择。该设计方案在硬件实现上简洁可靠;软件实现上可维护性好;可扩展性好,有利于系统的后续开发,降低了系统设计的复杂性。实验证明该方案可行性强,可以直接把系统的处理数据送到以太网上传输。可以看出,ARM和嵌入式TCP/IP协议将会得到更大的发展和更广阔的应用。

嵌入式TCP_IP协议栈说明书

嵌入式TCP_IP协议栈说明书 杨文斌 2008-9-1

一、总则 本文件是嵌入式TCP/IP协议栈的说明文件,嵌入式TCP/IP应用开发人员可通过阅读本文件,掌握在嵌入式TCP/IP协议栈的基础上开发服务器和客户端应用程序,如FTP服务器,WEB服务器,串口服务器等等。 二、参考文件 1)TCP_IP详解卷1,2,3 2)RFC 959 (rfc959) - File Transfer Protocol.htm 3)rfc1945- Hypertext Transfer Protocol -- HTTP/1.0 三、技术说明 1)用户应用协议栈则需要编写以太网的数据报收发驱动,就可以使用协议栈提供的标准SOCKET API,完成服务器和客户端应用程序的开发。 2)协议栈运行于非操作系统的环境下,因此它的运行速度与一般采用多任务操作系统的TCP/IP协 议,速度相对说来要快。 3)协议栈完成的功能包括ARP,IP,ICMP(ping),TCP,UDP,暂不支持IGMP,RARP。 4)协议栈采用C代码编写,可方便的移植于各种单片机平台。 5)协议栈在ARM7+RTL8019硬件环境下测试,并建立了FTP服务器和WEB服务器,性能稳定。 6)协议栈建立的FTP服务器和WEB服务器与Internet Explorer浏览器和ftp.exe相互兼容。 7)协议栈每一个SOCKET上建了数据缓冲队列(数据结构),用于接收SOCKET的并发数据,实现 多SOCKET的并发数据报处理,可同时运行FTP服务器和WEB服务器。 8)协议栈实现了ACK的延时答应(200ms),支持TCP多包发送和接收,但未支持TCP数据报的 失序处理,因此适合局域网内使用。 四、SOCKET API函数 1)函数SOCKET * socket(u16 af,u16 type,u16 protocol) 本函数功能是从SOCKET pool中分配一个SOCKET插口,供应用程序使用,其参数说明如下: 1.参数af,type—无意义,保留为扩充功能使用。 2.参数protocol—为分配SOCKET的类型,包括TCP_PROTOCOL和UDP_PROTOCOL两个 类型。 3.返回值:函数执行成功,返回SOCKET*指针指向一个SOCKET,失败返回NULL 2)函数u16 bind(SOCKET * sock,struct sockaddr * address,u8 len) 本函数功能是将IP地址和端口绑定到一个SOCKET 指针* sock指向的SOCKET。 1.SOCKET * sock—指向被绑定的SOCKET。 2.struct sockaddr * address—指向IP地址和端口。 3.len—无意义,保留为扩充功能使用。 4.返回值:SUCC。 3)函数u16 listen(SOCKET * sock, u16 QTY) 本函数功能是启动被绑定了地址和端口的SOCKET * sock,触发其为监听状态。本函数由服务 器端应用程序使用。 1.SOCKET * sock—指向被bind的SOCKET。 2.返回值:SUCC。 4)函数u16 connect(SOCKET * sock, struct sockaddr * sevaddr,u8 len) 本函数功能是用于建立一个连接到服务器,服务器的地址和端口由参数sevaddr指定。该函数由 客户端使用。 1.SOCKET * sock—指向被连接的本地SOCKET。 2.struct sockaddr * sevaddr,-- 服务器的地址和端口.

CycloneTCP协议栈移植与使用简介

Arda Technology Arda Tech P.F.FU 2014-12-19 Ver 0.1 #elif defined(USE_XXXXXX) #include "os_port_xxxxxx.h"

NicType type;//控制器类型。0:以太网接口,1:PPP接口,2:6LowPan接口 NicInit init;//控制器初始化函数指针 NicTick tick;//控制器周期性事务处理函数指针 NicEnableIrq enableIrq;//打开控制器中断函数指针 NicDisableIrq disableIrq;//关闭控制器中断函数指针 NicEventHandler eventHandler;//控制器中断响应函数指针,这个是下半段的中断处理部分。 NicSetMacFilter setMacFilter;//配置多播MAC地址过滤函数指针 NicSendPacket sendPacket;//发送包函数指针 NicWritePhyReg writePhyReg;//写PHY寄存器函数指针 NicReadPhyReg readPhyReg;//读PHY寄存器函数指针 bool_t autoPadding;//是否支持自动填充 bool_t autoCrcGen;//是否支持自动生成CRC校验码 bool_t autoCrcCheck;//是否支持自动检查CRC错误 NicSendControlFrame sendControlFrame;//发送控制帧函数指针 NicReceiveControlFrame receiveControlFrame;//接收控制帧函数指针 NicPurgeTxBuffer purgeTxBuffer;//清除发送缓冲函数指针 NicPurgeRxBuffer purgeRxBuffer;//清除接受缓存函数指针 xxxxEthInitGpio(...)//用于在init中初始化GPIO。 xxxxEthInitDmaDesc(...)//用于在init中初始化DMA任务描述符列表。 XXXX_Handler(...)//用于MAC中断的上半段处理。 xxxxEthReceivePacket(...)//用于在eventHandler中收包,把数据从dma的缓冲复制到外部缓冲。xxxxEthCalcCrc(...)//计算CRC值,这个函数基本上是固定的。 xxxxEthDumpPhyReg(...)//用于调试的打印PHY寄存器列表值。

基于ARM的嵌入式TCPip协议的实现

基于ARM的嵌入式TCP/IP协议的实现 该系统可以将数据按网络协议处理,实现数据的以太网传输。其是一套基于嵌入式实时操作系统的嵌入式网络软件开发平台,即在μC/OS—II的平台上,实现ARM微处理器的TCP/IP协议,在此平台之上,可以方便地进行嵌入式应用系统的开发。 0 引言 以太网具有通用性强、技术成熟、带宽迅速增加等特性,工业控制领域出现嵌入式技术,尤其是ARM技术的发展和DSP在工业控制领域的广泛应用,利用嵌入式技术实现以太网通信已经不难见到。嵌入式实时操作系统接入网络后将使远程监测、远程控制、远程诊断和远程维护变得越来越容易。从根本上讲,嵌入式设备接入网络,当前基本采用基于TCP/IP的通信协议。该方案以LPC2210为核心元件研究基于ARM的嵌入式TCP/IP协议的实现的硬件电路,同时在μC/OS一Ⅱ平台上编写应用软件程序。下面对系统做详实的阐述,并重点介绍嵌入式实时操作系统μC/OS—II应用于TCP/IP时应进行合理的裁减。 1 系统硬件设计 基于ARM的嵌入式TCP/IP网络通信系统主要包括ARM芯片和以太网控制器等芯片组成的以太网接口、驱动软件和嵌入式TCP/IP 协议栈。硬件原理图如图1所示。

该方案设计相对简单,硬件电路中采用的LPC2210是Philips 公司推出的微处理器,带有16 KBRAM,76个通用I/O口,12个独立外部中断引脚,集成有8通道的10位A/D,能够基于芯片设计复杂的系统。虽然LPC2210具有较快的访问速度,但片内没有集成FLASH,所以这里扩展1片16 Mb FLASH SST39VFl60来保存用户程序。其架构满足μC/OS—II正常运行的基本要求。 RTL8019AS是台湾Realtek半导体公司生产的以太网控制器,其性能包括:支持EthernetII和IEEE802.3标准;支持8/16位数据总线;内置16 KWord的SRAM;全双工,收发同时达到10 Mb/s;支持BNC,AUI,UTP介质。RTLS019AS可提供100脚的TQFP封装,减少了PCB面积,更适合于嵌入式系统。HR901170A是汉仁电子有限公司生产的RJ45接口连接器(带网络变压器/滤波器),该连接器满足IEEES02.3和IEEE902.3ab标准,能够较好地抑制电磁干扰。通过HR901170A系统就可以连接到以太网上。

TCPIP协议栈实践报告

《专业综合实践》 训练项目报告训练项目名称:TCP/IP协议栈

1.IP协议 IP协议是TCP/IP协议的核心,所有的TCP,UDP,IMCP,IGCP的数据都以IP数据格式传输。要注意的是,IP不是可靠的协议,这是说,IP协议没有提供一种数据未传达以后的处理机制--这被认为是上层协议--TCP或UDP要做的事情。所以这也就出现了TCP是一个可靠的协议,而UDP就没有那么可靠的区别。这是后话,暂且不提 1.1.IP协议头如图所示

挨个解释它是教科书的活计,我感兴趣的只是那八位的TTL字段,还记得这个字段是做什么的么?这个字段规定该数据包在穿过多少个路由之后才会被抛弃(这里就体现出来IP协议包的不可靠性,它不保证数据被送达),某个ip数据包每穿过一个路由器,该数据包的TTL数值就会减少1,当该数据包的TTL成为零,它就会被自动抛弃。这个字段的最大值也就是255,也就是说一个协议包也就在路由器里面穿行255次就会被抛弃了,根据系统的不同,这个数字也不一样,一般是32或者是64,Tracerouter这个工具就是用这个原理工作的,tranceroute 的-m选项要求最大值是255,也就是因为这个TTL在IP协议里面只有8bit。 现在的ip版本号是4,所以也称作IPv4。现在还有IPv6,而且运用也越来越广泛了。 1.2.IP路由选择 当一个IP数据包准备好了的时候,IP数据包(或者说是路由器)是如何将数据包送到目的地的呢?它是怎么选择一个合适的路径来"送货"的呢? 最特殊的情况是目的主机和主机直连,那么主机根本不用寻找路由,直接把数据传递过去就可以了。至于是怎么直接传递的,这就要靠ARP协议了,后面会讲到。 稍微一般一点的情况是,主机通过若干个路由器(router)和目的主机连接。那么路由器就要通过ip包的信息来为ip包寻找到一个合适的目标来进行传递,比如合适的主机,或者合适的路由。路由器或者主机将会用如下的方式来处理某一个IP数据包 如果IP数据包的TTL(生命周期)以到,则该IP数据包就被抛弃。 搜索路由表,优先搜索匹配主机,如果能找到和IP地址完全一致的目标

mtcp协议栈

mTCP:A Highly Scalable User-level TCP Stack for Multicore Systems EunYoung Jeong,Shinae Woo,Muhammad Jamshed,Haewon Jeong Sunghwan Ihm*,Dongsu Han,and KyoungSoo Park KAIST*Princeton University Abstract Scaling the performance of short TCP connections on multicore systems is fundamentally challenging.Although many proposals have attempted to address various short-comings,inef?ciency of the kernel implementation still persists.For example,even state-of-the-art designs spend 70%to80%of CPU cycles in handling TCP connections in the kernel,leaving only small room for innovation in the user-level program. This work presents mTCP,a high-performance user-level TCP stack for multicore systems.mTCP addresses the inef?ciencies from the ground up—from packet I/O and TCP connection management to the application inter-face.In addition to adopting well-known techniques,our design(1)translates multiple expensive system calls into a single shared memory reference,(2)allows ef?cient?ow-level event aggregation,and(3)performs batched packet I/O for high I/O ef?ciency.Our evaluations on an8-core machine showed that mTCP improves the performance of small message transactions by a factor of25compared to the latest Linux TCP stack and a factor of3compared to the best-performing research system known so far.It also improves the performance of various popular applications by33%to320%compared to those on the Linux stack. 1Introduction Short TCP connections are becoming widespread.While large content transfers(e.g.,high-resolution videos)con-sume the most bandwidth,short“transactions”1dominate the number of TCP?ows.In a large cellular network,for example,over90%of TCP?ows are smaller than32KB and more than half are less than4KB[45]. Scaling the processing speed of these short connec-tions is important not only for popular user-facing on-line services[1,2,18]that process small messages.It is 1We refer to a request-response pair as a transaction.These transac-tions are typically small in size.also critical for backend systems(e.g.,memcached clus-ters[36])and middleboxes(e.g.,SSL proxies[32]and redundancy elimination[31])that must process TCP con-nections at high speed.Despite recent advances in soft-ware packet processing[4,7,21,27,39],supporting high TCP transaction rates remains very challenging.For exam-ple,Linux TCP transaction rates peak at about0.3million transactions per second(shown in Section5),whereas packet I/O can scale up to tens of millions packets per second[4,27,39]. Prior studies attribute the inef?ciency to either the high system call overhead of the operating system[28,40,43] or inef?cient implementations that cause resource con-tention on multicore systems[37].The former approach drastically changes the I/O abstraction(e.g.,socket API) to amortize the cost of system calls.The practical lim-itation of such an approach,however,is that it requires signi?cant modi?cations within the kernel and forces ex-isting applications to be re-written.The latter one typically makes incremental changes in existing implementations and,thus,falls short in fully addressing the inef?ciencies. In this paper,we explore an alternative approach that de-livers high performance without requiring drastic changes to the existing code base.In particular,we take a clean-slate approach to assess the performance of an untethered design that divorces the limitation of the kernel implemen-tation.To this end,we build a user-level TCP stack from the ground up by leveraging high-performance packet I/O libraries that allow applications to directly access the packets.Our user-level stack,mTCP,is designed for three explicit goals: 1.Multicore scalability of the TCP stack. 2.Ease of use(i.e.,application portability to mTCP). 3.Ease of deployment(i.e.,no kernel modi?cations). Implementing TCP in the user level provides many opportunities.In particular,it can eliminate the expen-sive system call overhead by translating syscalls into inter-process communication(IPC).However,it also in-

嵌入式TCP/IP网络通信协议的实现

龙源期刊网 嵌入式TCP/IP网络通信协议的实现 作者:龚峰文王剑 来源:《硅谷》2008年第24期 [摘要]TCP/IP已成为网络互联的标准,并成为支持Internet/Intranet的协议标准。就是针对当前流行的TCP/IP网络通信协议的实现进行具体的研究和探讨。 [关键词]TCP/IP协议 Internet 网络通信 中图分类号:TP3 文献标识码:A 文章编号:1671-7597(2008)1220053-01 Internet已经发展得更加商业化,更加面向消费者,尽管基本目的发生了改变,但其最初的质量标准(也就是开放式、抗毁性和可靠性)依然是必需的。这些特性包括可靠传输数据、自动检测、避免网络发生错误等。更重要的就是TCP/IP是一个开放式的通信协议,开放性就意味着在任何组合间,不管这些设备的物理特征有多大差异,都可以进行通信。 一、标准TCP/IP协议 如同OSI参考模型一样,TCP/IP也是一种分层模型。与OSI参考模型不同的是,TCP/IP 参考模型更侧重于互联设备间的数据传送,而不是严格的功能层次划分。TCP/IP通过解释功 能层次分布的重要性来做到这一点,但它仍为设计者具体实现协议留下很大的余地。因此,OSI参考模型适用于解释互联网络的通信机制,而TCP/IP更适合做互联网络协议的市场标 准。 TCP/IP协议是一套把因特网上的各种系统互联起来的协议组,可以保证因特网上数据准 确又快速地传输。TCP/IP协议是一个很大的协议族,通常表示为一个简化的四层模型。这四 层分别是应用层、传输层、网络层和链路层。 二、IP协议的实现

TCPIP协议分析

TCP/IP协议分析及应用 在计算机网络的发展过程中,TCP/IP网络是迄今为止对人类社会影响最重要的一种网络。TCP和IP是两种网络通信协议,以这两种协议为核心协议的网络总称为TCP/IP网络。人们常说的国际互联网或因特网就是一种TCP/IP网络,大多数企业的内部网也是TCP/IP网络。 作为一名学习计算机的学生,我们一定要对TCP/IP协议进行深刻的解析。通过对协议的分析进一步了解网络上数据的传送方式和网络上出现的问题的解决方法。本实验就是对文件传输协议进行分析来确定FTP协议工作方式。 目的:通过访问FTP:202.207.112.32,向FTP服务器上传和下载文件。用抓包工作来捕捉数据在网络上的传送过程。为的方便数据包的分析,通过上传一个内容为全A的TXT文件,来更直观的分析文件传输的过程。 过程: 1.在本机上安装科莱抓包软件 2.对科莱进行进滤器的设置(arp、ftp、ftp ctrl、ftp data) 3.通过运行CMD窗口进行FTP的访问 4.用PUT和GET进行文件的上传与下载 5.对抓到的包进行详细的分析 CMD中的工作过程: C:\Documents and Settings\Administrator>ftp 202.207.112.32 Connected to 202.207.112.32. 220 Serv-U FTP Server v5.1 for WinSock ready... User (202.207.112.32:(none)): anonymous //通过匿名方式访问 331 User name okay, please send complete E-mail address as password. Password: 230 User logged in, proceed. ftp> cd 学生作业上传区/暂存文件夹 250 Directory changed to /学生作业上传区/暂存文件夹 ftp> put d:\aaa123.txt //上传aaa123.txt文件 200 PORT Command successful. 150 Opening ASCII mode data connection for aaa123.txt.

tcp、ip协议栈移植

This article was downloaded by: [University of Jiangnan] On: 27 March 2015, At: 06:51 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Journal of Discrete Mathematical Sciences and Cryptography Publication details, including instructions for authors and subscription information: /loi/tdmc20 An abridged protocol stack for micro controller in place of TCP/IP R. Seshadri a a Computer Centre, S.V. University , Tirupati , 517 502 , India Published online: 03 Jun 2013. PLEASE SCROLL DOWN FOR ARTICLE

An abridged protocol stack for micro controller in place of TCP/IP R.Seshadri ? Computer Centre S.V .University Tirupati 517502India Abstract The existing TCP/IP protocol stack running in hosts takes lot of overhead while the node in network is for a speci?c purpose.For example transferring simple messages across network.If the node in the network is not a PC but,some thing like a micro controller,which measures some values and stores in its local memory,then it becomes lavishness in using the micro controller’s memory.As it is a node in a network,working with TCP/IP ,it should be able to transfer those values in the form of messages to other hosts which are in either local network or global network. But in micro controller terms the memory is expensive and compact.The existing TCP/IP stack consumes a few mega bytes of memory.Therefore it can’t be accommodated in the memory of micro controller.Hence one needs to reduce the memory consumption.In this regard,an abridged protocol which replaces the existing TCP/IP has been designed to suit the above needs.For this purpose,the TCP/IP have been combined with KEIL C51features for 8051micro controller to make it work in transferring messages in local area network as well as global network. The above scheme was implemented and tested and the system was working satisfac-torily.The results are found to be more effective in communicating information/message from the micro controller to a PC. Keywords :Ethernet,stack,Transmission Control Protocol (TCP ),Internet Protocol (IP ).Introduction to TCP/IP The name TCP/IP refers to a suite of communication protocols.The name is misleading because TCP and IP are the only two of the dozens of protocols that compose the suite.Its name comes from two of the most ?E-mail :ravalaseshadri@yahoo.co.in —————————————————– Journal of Discrete Mathematical Sciences &Cryptography Vol.9(2006),No.3,pp.523–536 c Taru Publications D o w n l o a d e d b y [U n i v e r s i t y o f J i a n g n a n ] a t 06:51 27 M a r c h 2015

tcpip协议知识点与练习题

第一章 ?TCPIP和OSI分层模型,包含了哪些层,作用是什么 tcp五层 osi七层 ?每层名称,作用不用原话背下来,理解就可以,能用自己的话写下来就行。

?上下层的关系,谁封装谁(tcp),谁在谁的内部(外部) ?TCPIP协议和OSI协议异同点? 相同点:都是层次结构,按照功能分层 不同点:一个是五层,一个是七层;OSI之间有严格的调用关系,两个N层实体间进行通信必须通过下一层N-1层实体,不能越级;TCPIP可以越过紧邻的下一层直接使用更底层所提供的服务,减少了不必要的开销,效率更高。 ?如果题目没有明确说明的情况下,所有的网络环境默认为以太网 第三章 ?以以太网为例,搞清楚帧的最短和最长的限制分别是多少 https:///u012503786/article/details/78615551 46-1500 数据部分 计算完整的帧长,需要加上头部和尾部,头部+尾部18字节,所以帧的范围是64-1518 64是怎么来的?46+18 ?CSMA/CD 载波监听冲突检测 一个帧从节点到其他节点发送时,如果其他节点也发送数据,则发生冲突。标准以太网最长距离的往返时间是51.2微妙,这个时间称为冲突窗口。如果发生了冲突,则会在冲突窗口内检测出来,如果没有发生冲突,之后其他节点再发出数据帧时,就会侦听到信道忙,所以就不会发送数据,所以也就不会产生冲突。他会等待一段随机的时间再次试探性地发送,这种产生随机时间的算法叫退避算法 ?每个层上传输数据的名称大家要掌握 第一层比特流 第二层帧

第三层IP数据报 第四层UDP数据报 ?TCP报文 各个层上常用的设备名字 设备都是向下兼容的 物理层传比特流 链路层帧 网络层ip数据报 ?链路层依靠MAC地址进行寻址,网络层依靠IP地址进行寻址 ?MAC地址怎么来的,网卡在出厂时封印在网卡上的,不能重复,不能改变,所以网卡具有唯一性。 ?既然MAC地址是唯一的,为什么还需要IP地址呢? 局域网内IP地址一般都是靠DHCP动态分布的,所以IP和计算机不是绑定的,假设一台机器是192.168.1.1,当这台机器下线了,这个IP就被分配给其他机器了,此时通信就要出问题了。但是MAC和计算机是一一对应的,所以局域网内使用MAC进行通信。早期的以太网只有交换机,因为那时网络规模比较小,没有路由器的,以太网通过MAC方式寻址,后来有了互联网,为了兼容原来的模式,采用了IP+MAC地址通信的方式,为啥不干脆取消MAC呢,因为MAC技术基础和应用太广泛了,如果推倒重建代价太大,看一下现在的IPV6为什么不能推广起来就是这个原因。 机器刚开机时,没有IP地址的,所以要通过MAC地址通知DHCP服务器给他一个IP地址才能使用,所以从这个角度来说MAC地址也不能取消。 第六章 ?ABC类地址前缀 ?ip数据报头部长度是多少,最大长度是多少 头部是20 最大1500-20 1500是帧数据部分最大 ?具体的数据报格式不用背,但是字段的含义和长度要知道

tcp,ip详解卷1,协议,下载

竭诚为您提供优质文档/双击可除tcp,ip详解卷1,协议,下载 篇一:tcp_ip协议详解 tcp/ip协议详解 这部分简要介绍一下tcp/ip的内部结构,为讨论与互联网有关的安全问题打下基础。tcp/ip协议组之所以流行,部分原因是因为它可以用在各种各样的信道和底层协议(例如t1和x.25、以太网以及Rs-232串行接口)之上。确切地说,tcp/ip协议是一组包括tcp协议和ip协议,udp (userdatagramprotocol)协议、icmp (internetcontrolmessageprotocol)协议和其他一些协议的协议组。 tcp/ip整体构架概述 tcp/ip协议并不完全符合osi的七层参考模型。传统的开放式系统互连参考模型,是一种通信协议的7层抽象的参考模型,其中每一层执行某一特定任务。该模型的目的是使各种硬件在相同的层次上相互通信。这7层是:物理层、数据链路层、网路层、传输层、话路层、表示层和应用层。而tcp/ip通讯协议采用了4层的层级结构,每一层都呼叫它的

下一层所提供的网络来完成自己的需求。这4层分别为:应用层:应用程序间沟通的层,如简单电子邮件传输(smtp)、文件传输协议(Ftp)、网络远程访问协议(telnet)等。 传输层:在此层中,它提供了节点间的数据传送服务,如传输控制协议(tcp)、用户数据报协议(udp)等,tcp和udp给数据包加入传输数据并把它传输到下一层中,这一层负责传送数据,并且确定数据已被送达并接收。 互连网络层:负责提供基本的数据封包传送功能,让每一块数据包都能够到达目的主机(但不检查是否被正确接收),如网际协议(ip)。 网络接口层:对实际的网络媒体的管理,定义如何使用实际网络(如ethernet、serialline等)来传送数据。 tcp/ip中的协议 以下简单介绍tcp/ip中的协议都具备什么样的功能,都是如何工作的: 1.ip 网际协议ip是tcp/ip的心脏,也是网络层中最重要的协议。 ip层接收由更低层(网络接口层例如以太网设备驱动程序)发来的数据包,并把该数据包发送到更高层---tcp或udp层;相反,ip层也把从tcp或udp层接收来的数据包传

tcpip协议的最高层是什么

竭诚为您提供优质文档/双击可除tcpip协议的最高层是什么 篇一:题目4e6750d5360cba1aa811da12 一、整体解读 试卷紧扣教材和考试说明,从考生熟悉的基础知识入手,多角度、多层次地考查了学生的数学理性思维能力及对数学本质的理解能力,立足基础,先易后难,难易适中,强调应用,不偏不怪,达到了“考基础、考能力、考素质”的目标。试卷所涉及的知识内容都在考试大纲的范围内,几乎覆盖了高中所学知识的全部重要内容,体现了“重点知识重点考查”的原则。 1.回归教材,注重基础 试卷遵循了考查基础知识为主体的原则,尤其是考试说明中的大部分知识点均有涉及,其中应用题与抗战胜利70 周年为背景,把爱国主义教育渗透到试题当中,使学生感受到了数学的育才价值,所有这些题目的设计都回归教材和中学教学实际,操作性强。 2.适当设置题目难度与区分度 选择题第12题和填空题第16题以及解答题的第21题,

都是综合性问题,难度较大,学生不仅要有较强的分析问题和解决问题的能力,以及扎实深厚的数学基本功,而且还要掌握必须的数学思想与方法,否则在有限的时间内,很难完成。 3.布局合理,考查全面,着重数学方法和数学思想的考察 在选择题,填空题,解答题和三选一问题中,试卷均对高中数学中的重点内容进行了反复考查。包括函数,三角函数,数列、立体几何、概率统计、解析几何、导数等几大版块问题。这些问题都是以知识为载体,立意于能力,让数学思想方法和数学思维方式贯穿于整个试题的解答过程之中。 篇二:tcpip和osi模型分别分为几层,每层主要作用以及包括的主要协议 tcp/ip协议分为4层 1.网络接口层:对实际的网络媒体的管理,定义如何使用实际 网络(如ethernet、serialline等)来传送数据。 主要协议:ip(internetprotocol)协议 3.传输层:提供了节点间的数据传送服务,如传输控制协议(tcp)、用户数据报协议(udp)等,tcp和udp给数据包加入传输数据并把它传输到下一层中,这一层负责传送数据,并且确定数据已被送达并接收。

嵌入式TCPIP协议栈

嵌入式TCPIP协议栈 嵌入式TCP/IP协议栈 目前,市场上几乎所有的嵌入式TCP/IP协议栈都是根据BSD版的TCP/IP协议栈改写的。在商业嵌入式TCP/IP协议栈大都相当昂贵的情况下,很多人转而使用一些源代码公开的免费协议栈,并加以改造应用。目前较为著名的免费协议栈有: lwIP(Light weight TCP/IP Stack)——支持的协议比较完整,一般需要多任务环境支持,代码占用ROM>40KB,不适合8位机系统,没有完整的应用文档; uC/IP(TCP/IP stack for uC/OS)—基于uC/OS的任务管理,接口较复杂,没有说明文档。 笔者采用的协议栈系瑞典计算机科学研究所Adam Dunkels开发的uIP0.9。其功能特性总结如下: *完整的说明文档和公开的源代码(全部用C语言编写,并附有详细注释); *极少的代码占用量和RAM资源要求,尤其适用于8/16位单片机(见表1); *高度可配置性,以适应不同资源条件和应用场合; *支持ARP、IP、ICMP、TCP、UDP(可选)等必要的功能特性; *支持多个主动连接和被动连接并发,支持连接的动态分配和释放; *简易的应用层接口和设备驱动层接口; *完善的示例程序和应用协议实现范例。 表1 uIP在ATMEL AVR上代码和RAM占用情况 协议模块代码大小/B 使用的RAM/B ARP 1324 118 IP/ICMP/TCP 3304 360 HTTP 994 110 校验和函数636 0 数据包缓存0 400 总和6258 988

注:配置为1个TCP听端口,10个连接,10个ARP表项,400字节数据包缓存。 正是由于uIP所具有的显著特点,自从0.6版本以来就被移植到多种处理器上,包括MSP430、AVR和Z80等。笔者使用的uIP0.9是2003年11月发布的版本。目前,笔者已将它成功移植到MCS-51上了。 2 uIP0.9的体系结构 uIP0.9是一个适用于8/16位机上的小型嵌入式TCP/IP协议栈,简单易用,资源占用少是它的设计特点。它去掉了许多全功能协议栈中不常用的功能,而保留网络通信所必要的协议机制。其设计重点放在IP、ICMP和TCP协议的实现上,将这三个模块合为一个有机的整体,而将UDP和ARP协议实现作为可选模块。UIP0.9的体系结构如图1所示。 UIP0.9处于网络通信的中间层,其上层协议在这里被称之为应用程序,而下层硬件或固件被称之为网络设备驱动。显然,uIP0.9并不是仅仅针对以太网设计的,以具有媒体无关性。 为了节省资源占用,简化应用接口,uIP0.9在内部实现上作了特殊的处理。 ①注意各模块的融合,减少处理函数的个数和调用次数,提高代码复用率,以减少ROM占用。 ②基于单一全局数组的收发数据缓冲区,不支持内存动态分配,由应用负责处理收发的数据。 ③基于事件驱动的应用程序接口,各并发连接采用轮循处理,仅当网络事件发生时 ,由uIP内核唤起应用程序处理。这样,uIP用户只须关注特定应用就可以了。传统的TCP/IP实现一般要基于多任务处理环境,而大多数8位机系统不具备这个条件。 ④应用程序主动参与部分协议栈功能的实现(如TCP的重发机制,数据包分段和流量控制),由uIP内核设置重发事件,应用程序重新生成数据提交发送,免去了大量内部缓存的占用。基于事件驱动的应用接口使得这些实现较为简单。 3 uIP的设备驱动程序接口 uIP内核中有两个函数直接需要底层设备驱动程序的支持。 一是uip_input()。当设置驱动程序从网络层收到的一个数据包时要调用这个函数,

tcp-ip协议详细讲解

TCP/IP协议详解 这部分简要介绍一下TCP/IP的部结构,为讨论与互联网有关的安全问题打下基础。TCP/IP协议组之所以流行,部分原因是因为它可以用在各种各样的信道和底层协议(例如T1和X.25、以太网以及RS-232串行接口)之上。确切地说,TCP/IP协议是一组包括TCP协议和IP协议,UDP(User Datagram Protocol)协议、ICMP(Internet Control Message Protocol)协议和其他一些协议的协议组。 TCP/IP整体构架概述 TCP/IP协议并不完全符合OSI的七层参考模型。传统的开放式系统互连参考模型,是一种通信协议的7层抽象的参考模型,其中每一层执行某一特定任务。该模型的目的是使各种硬件在相同的层次上相互通信。这7层是:物理层、数据链路层、网路层、传输层、话路层、表示层和应用层。而TCP/IP通讯协议采用了4层的层级结构,每一层都呼叫它的下一层所提供的网络来完成自己的需求。这4层分别为: 应用层:应用程序间沟通的层,如简单电子传输(SMTP)、文件传输协议(FTP)、网络远程访问协议(Telnet)等。 传输层:在此层中,它提供了节点间的数据传送服务,如传输控制协议(TCP)、用户数据报协议(UDP)等,TCP和UDP给数据包加入传输数据并把它传输到下一层中,这一层负责传送数据,并且确定数据已被送达并接收。 互连网络层:负责提供基本的数据封包传送功能,让每一块数据包都能够到达目的主机(但不检查是否被正确接收),如网际协议(IP)。 网络接口层:对实际的网络媒体的管理,定义如何使用实际网络(如Ethernet、Serial Line等)来传送数据。 TCP/IP中的协议 以下简单介绍TCP/IP中的协议都具备什么样的功能,都是如何工作的: 1. IP 网际协议IP是TCP/IP的心脏,也是网络层中最重要的协议。 IP层接收由更低层(网络接口层例如以太网设备驱动程序)发来的数据包,并把该数据包发送到更高层---TCP或UDP层;相反,IP层也把从TCP或UDP层接收来的数据包传送到更低层。IP数据包是不可靠的,因为IP并没有做任何事情来确认数据包是按顺序发送的或者没有被破坏。IP数据包中含有发送它的主机的地址(源地址)和接收它的主机的地址(目的地址)。 高层的TCP和UDP服务在接收数据包时,通常假设包中的源地址是有效的。也可以这样说,IP地址形成了许多服务的认证基础,这些服务相信数据包是从一

相关主题