当前位置:文档之家› 无线传感器网络的S-MAC协议仿真

无线传感器网络的S-MAC协议仿真

《无线网络技术》实验四报告单

班级____ ___ 姓名_____ ___ 学号__ ___

实验日期__ ___ 评分____ 教师签名______ _______

实验名称:无线传感器网络的S-MAC协议仿真

实验目的:

了解无线传感器网络的S-MAC协议及提出一种消息节点睡眠机制和退避策略,然后通过在NS2平台上的仿真,可发现对能量消耗和网络延迟有部分改善。

实验内容:

1 .无线传感器网络概述

无线传感器网络(witeleSs Sensor Networks,WSN)是集信息采集、信息传输、信息处理于一体的综合智能信息系统。它综合了微机电系统(Micro—Elec— tron Mechanical System,MS)、传感器技术、嵌入式技术、现代网络及无线通信技术、分布式信息处理技术等,能够通过各类集成化的微型传感器协作地实时监控、感知和采集各种环境或监控对象的信息。在军事领域、工业领域、农业领域、环境检测、医疗监护、智能家具系统等许多领域都有十分广阔的发展前景。

2.无线传感器网络结构

无线传感器网络包括传感器节点(Sensor Node)、汇聚节点(Sink Node)和管理节点(Manager node)。

无线传感器网络的协议栈采用5层的分层结构,分别为:物理层、数据链路层、网络层、传输层和应用层。在网络协议栈中,MAC子层位于数据链路层,直接与物理层接口,负责控制和接入物理介质。提供无线传感器网络中节点到节点的连接方式,确保传感器节点间通信资源分配的公平性和有效性。

3.基于竞争的MAC协议分析

S-MAC(sensor MAC)[协议是针对IEEE802.11中节点处于侦听状态,消耗大量能量的问题,提出的周期性的休眠/活动调度机制。S-MAC由一个开始的同步时间段开始,交换SYNC消息形成虚拟簇。相同虚拟簇下的节点可以传输数据。节点只有在活动阶段才发送消息,如图1.1SMAC采用数据传递机制,通过这种周期性的修眠/活动工作机制,节点降低了闲置侦听,降低了能耗。

For SYNC For CTS For RTS Receiver

Listen Period

Receive/Sleep

Period

Sender

Tx SYNC

CS Ts RTS

CS

Got CTS

Send data

图1.1 SMAC 数据传递机制

采用以上机制,SMAC 协议有以下几点好处:(1)采用周期性睡眠 /侦听占空比,控制节点进入睡眠状态,降低了节点能耗;(2) RTS / CTS 机制降低通信范围节点间的碰撞概率 ;(3) NAV 避免串音现象,降低了能耗。

SMAC 协议相比IEEE802.11提高了能量的效率,但是也存在一些不足,节点采用周期性的侦听和睡眠调度机制,数据在发送时有延迟;邻居节点频繁交换SYNC 信息会导致节点消耗更多的能量;当网络负载较低时,过高的占空比会导致空闲侦听会造成能量浪费,当负载较高时,又会造成网络延迟;节点为了节省能量进入睡眠状态,增大了睡眠延时。

4.NS2网络仿真

仿真场景如图1.2所示,在1000m*1000m 的范围内,采用随机分布的方式布置了一

个49个固定节点和一个sink 节点构成的较大规模的网络拓扑,在网络模型中,假设所有节点都能侦听到整个网络的通信情况,即没有考虑隐藏节点问题。

图1.2 节点随机分布

生成网络模型的部分TCL 代码如下: for {set i 0} {$i < $opt(nn) } {incr i} {

set node_($i) [$ns_ node]

$node_($i) random-motion 0

$god_ new_node $node_($i)

set ragent_($i) [$node_($i) get-ragent]

set mac_($i) [$node_($i) get-mac 0]

}

4.1 参数设置

设置NS2中的网络参数,为了对设定的网络环境进行仿真,可以通过设置不同的参数来实现。对于网络中不同的应用,可以设置移动节点的属性,通过设置energyModel来获取节点的剩余能量值;设置CBR流量发生器产生网络数据流,并将其绑定到节点上,可以设置CBR的值,使其按照一个确定的速率产生数据,也可以设置不同的节点不同的数据发送速率,不同速率可以通过对节点的参数interval进行设置实现。对网络规模的大小可以根据用户的需要通过对网络中节点的数目,网络场景的长宽尺寸等设置;配置节点能量模型,设置节点接收发送数据包和节点在闲置侦听状态下所消耗的能量值。

配置移动节点的路径参数:为了对仿真结果进行分析,需要将仿真好的结果记录到Trace 文件中,打开节点的Trace功能,设置其中的参数:agentTrace表示应用层的trace,记录应用层数据包接受情况;routerTrace表示路由的trace,记录路由层数据包传递情况;macTrace表示MAC层的trace,在trace文件中用MAC表示。

设置完以上参数后,每次仿真就可以得到以.tr为后缀的trace文件,trace文件中记录了仿真期间各层发生的事件,各个节点收发数据,能量消耗等情况。参数设置程序如下:-energyModel $opt(energymodel) \#能量模型

-idlePower 0.35\#待机功率

-rxPower 0.395 \#接受功率

-txPower 0.66 \#传输功率

-initialEnergy $opt(initialenergy)#总的能量数

set udp_(0) [new Agent/UDP]#新建一个UDP Agent赋值给udp_(0)

$ns_ attach-agent $node_(0) $udp_(0)#绑定udp_(0)在node_(0)上

set null_(0) [new Agent/Null]#新建一个UDP Agent并赋值给null_(0)

$ns_ attach-agent $node_([expr $opt(nn)-1]) $null_(0)

$ns_ connect $udp_(0) $null_(0)

set cbr_(0) [new Application/Traffic/CBR]

$cbr_(0) set packetSize_ 100

$cbr_(0) set interval_ 1.0

$cbr_(0) set random_ 0

$cbr_(0) attach-agent $udp_(0)

4.2 协议的实现

由于改进的协议http://biz.doczj.com/doc/ec3313909.html,和ns-802.11-mts.h是在基于竞争的802.11协议的基础上继承而来,因此,修改ns-2.29/mac下mac-802_11.h和mac.h头文件。在在MacState枚举类型中添加MTS帧结构。

由于NS2采用的是分裂对象模型,既可以用OTcl 对象也可以用C++程序进行修改,需要修改协议的C++代码: Mac802_11::recv_hand() { assert(pktRx_);

assert(rx_state_==MAC_RECV||rx_state_==MAC_COLL);

if(tx_active_) { Packet::free(pktRx_); goto done; } if( dh->dh_scontrol == sta_seqno_; ) { Packet::free(pktRx_);

set_nav(usec(phymib_.getEIFS())); goto done;

}

if(dst != (u_int32_t)index_) { set_nav(mh->dh_duration);

}

修改send 函数,首先检查是否有MTS 数据包,如果收到MTS 数据包,说明节点有数据要发送,数据发送成功。流程图如图1.3

侦听到MTS

侦听到DATA

解析分组

Sta_seno_相等

YES

NO

YES YES

发送完成

发送数据

Send_time()超时

NO

NO

图1.3 数据发送检测流程图

函数程序如下:

Mac802_11::send(Packet *p, Handler *h)

{

double rTime;

struct hdr_mac802_11* dh = HDR_MAC802_11(p);

EnergyModel *em = netif_->node()->energy_model();

if (em && em->sleep()) {

em->set_node_sleep(0);

em->set_node_state(EnergyModel::INROUTE);

}

callback_ = h;

if(pktTx_ == 0)

return -1;

else { sendDATA(p);

check_pktMTS();

timeout = txtime(pktTx_);

setTxState(MAC_SEND);

if(mhWakeup_.status()==SMAC_SEND)

startSend();

}

else {

fprintf(stderr, "ERROR\n");

exit(1);

}

}

对packet.h进行修改,在ns-allinone-2.29/ ns-2.29/ common文件夹下,添加定义访问协议报头的指针:

#define HDR_NAMAC(p) ((hdr_namac *)hdr_mac::access(p)) 增加NA-MAC包类型(协议标志),所有的包类型都是PT_开头,如PT_TCP,PT_UDP 等,在枚举类型enum packet_t{}中增加:

PT_NAMAC

在类class p_info{}的构造函数添加标志,这样就可以通过协议标识寻找协议对应的字符串:

name_[PT_NAMAC]="namac"

修改缺省类型,在~/ns-allinone-2.29/ns-2.29/tcl/lib目录下修改ns-lib.tcl文件,添加路由协议:

SimRoute {

set ragent [$self create-simroute-agent $node]

}

if { $routingAgent_ == "SimRoute"} {

$ragent port-dmux [$node demux]

$node instvar ll_

$ragent add-ll $ll_(0)

$ragent use-ll 0

}

在ns-mobilenode.tcl中添加ifq队列和trace对象:

$mac ifq $ifq

$mac trace-target $rcvT

if { $imepflag != "" } {

set rcvT [$self mobility-trace Recv "MAC"]

} else {

set rcvT [cmu-trace Recv "MAC" $self]

}

$mac trace-target $rcvT

绑定C++和OTCL。OTCL对象中调用对应的C++对象方法,NS是通过command()函数实现的。将C++ 中新用到的方法添加到command()方法中,使得OTCL能够正常调用,修改如下:

else if(strcmp(argv[1], "trace-target")==0) {

tracetarget_ = (NsObject*)TclObject::lookup(argv[2]);

if(tracetarget_==0)

return TCL_ERROR;

return TCL_OK;

} else if(strcmp(argv[1], "ifq") == 0) {

ifq = (PriQueue*)TclObject::lookup(argv[2]);

if(ifq==0)

return TCL_ERROR;

return TCL_OK;

} else if(strcmp(argv[1], "level") == 0) {

level_ = atoi(argv[2]);

mhWakeup_.sched(level_*recvTime+recvTime);

return TCL_OK;

}

修改NS2的编译文件,以便对经过上述修改后的NS2重新进行编译,修改Makefile文件:

mac/channel.o mac/mac.o mac/ll.o mac/mac-802_11-mts.o \ 建立模型之后,运行ns-2.29/mac/下的tcl文件,

图1.4数据发送检测图

由仿真结果可知,在不增大网络延迟的情况下,当网络负载较大时,在SMAC协议中,数据包发送频率过大,导致碰撞冲突,消耗了过多的能量,而改后的MAC由于采用了节点周期性休眠机制和退避策略,有效地减少了碰撞冲突,减少了能量消耗,而在网络负载较低的情况下,消耗的能量相当。

实验总结:

通过本次实验,对现有的MAC协议进行比较分析,突出SMAC协议在能量效率方面的优势,SMAC的核心思想是采用交错调度机制,是根据数据采集树这种通信模式提出来的。在NS2仿真平台上对无线传感器网络进行仿真分析,通过仿真结果可以发现,在数据采集树采用了节点周期性休眠机制和退避策略,有效地减少了碰撞冲突,减少了能量消耗,而在网络负载较

低的情况下,消耗的能量相当。

无线传感器网络技术试题

1. 传感器网络的三个基本要素:传感器、感知对象、用户(观察者) 2. 传感器网络的基本功能:协作式的感知、数据采集、数据处理、发布感知信息 3. 无线传感器节点的基本功能:采集数据、数据处理、控制、通信 4. 传感节点中处理部件用于协调节点各个部分的工作的部件。 5. 基站节点不属于传感器节点的组成部分 6. 定向扩散路由机制可以分为三个阶段:兴趣扩展阶段、梯度建立阶段、路径加强阶段 7. 无线传感器网络特点:大规模网络、自组织网络、可靠的网络、以数据为中心的网络、应用相关的网络 8. NTP时间同步协议不是传感器网络的的时间同步机制。 9. IEEE 802.15.4标准主要包括:物理层。介质访问控制层 10. 从用户的角度看,汇聚节点被称为网关节点。 11. 数据融合的内容主要包括:多传感器的目标探测、数据关联、跟踪与识别、情况评估和预测 13. 传感器网络的电源节能方法:_休眠(技术)机制、__数据融合 14. 分布式系统协同工作的基础是时间同步机制 15. 无线网络可以被分为有基础设施的网络与没有基础设施的网络,在无线传感器网络,Internet 网络,WLan 网络,拨号网络中,无线传感器网络属于没有基础设施的网络。 16. 传感器网络中,MAC层与物理层采用的是IEEE制定的IEEE 802.15协议 17. 分级结构的传感器网络可以解决平面结构的拥塞问题 18. 以数据为中心特点是传感器网络的组网特点,但不是Ad-Hoc的组网特点 19. 为了确保目标节点在发送ACK过程中不与其它节点发生冲突,目标节点使用了SIFS帧间间隔 20. 典型的基于竞争的MAC协议为CSMA

基于无线传感器网络的环境监测系统设计与实现

南京航空航天大学 硕士学位论文 基于无线传感器网络的环境监测系统设计与实现 姓名:耿长剑 申请学位级别:硕士 专业:电路与系统 指导教师:王成华 20090101

南京航空航天大学硕士学位论文 摘要 无线传感器网络(Wireless Sensor Network,WSN)是一种集成了计算机技术、通信技术、传感器技术的新型智能监控网络,已成为当前无线通信领域研究的热点。 随着生活水平的提高,环境问题开始得到人们的重视。传统的环境监测系统由于传感器成本高,部署比较困难,并且维护成本高,因此很难应用。本文以环境温度和湿度监控为应用背景,实现了一种基于无线传感器网络的监测系统。 本系统将传感器节点部署在监测区域内,通过自组网的方式构成传感器网络,每个节点采集的数据经过多跳的方式路由到汇聚节点,汇聚节点将数据经过初步处理后存储到数据中心,远程用户可以通过网络访问采集的数据。基于CC2430无线单片机设计了无线传感器网络传感器节点,主要完成了温湿度传感器SHT10的软硬件设计和部分无线通讯程序的设计。以PXA270为处理器的汇聚节点,完成了嵌入式Linux系统的构建,将Linux2.6内核剪裁移植到平台上,并且实现了JFFS2根文件系统。为了方便调试和数据的传输,还开发了网络设备驱动程序。 测试表明,各个节点能够正确的采集温度和湿度信息,并且通信良好,信号稳定。本系统易于部署,降低了开发和维护成本,并且可以通过无线通信方式获取数据或进行远程控制,使用和维护方便。 关键词:无线传感器网络,环境监测,温湿度传感器,嵌入式Linux,设备驱动

Abstract Wireless Sensor Network, a new intelligent control and monitoring network combining sensor technology with computer and communication technology, has become a hot spot in the field of wireless communication. With the improvement of living standards, people pay more attention to environmental issues. Because of the high maintenance cost and complexity of dispose, traditional environmental monitoring system is restricted in several applications. In order to surveil the temperature and humidity of the environment, a new surveillance system based on WSN is implemented in this thesis. Sensor nodes are placed in the surveillance area casually and they construct ad hoc network automatieally. Sensor nodes send the collection data to the sink node via multi-hop routing, which is determined by a specific routing protocol. Then sink node reveives data and sends it to the remoted database server, remote users can access data through Internet. The wireless sensor network node is designed based on a wireless mcu CC2430, in which we mainly design the temperature and humidity sensors’ hardware and software as well as part of the wireless communications program. Sink node's processors is PXA270, in which we construct the sink node embedded Linux System. Port the Linux2.6 core to the platform, then implement the JFFS2 root file system. In order to facilitate debugging and data transmission, the thesis also develops the network device driver. Testing showed that each node can collect the right temperature and humidity information, and the communication is stable and good. The system is easy to deploy so the development and maintenance costs is reduced, it can be obtained data through wireless communication. It's easy to use and maintain. Key Words: Wireless Sensor Network, Environment Monitoring, Temperature and Humidity Sensor, Embedded Linux, Device Drivers

项目三了解无线传感器协议栈

项目三了解无线传感器协议栈 项目三了解ZigBee无线传感器网络协议栈知识目标1.掌握zigbee无线传感器网络的协议栈和协议的区别等知识。 2.掌握Z-Stack协议栈的OSAL分配机制。 3.了解Z-Stack协议栈的OSAL运行机制。 4.掌握Z-Stack协议栈的OSAL常用函数。 项目三了解ZigBee无线传感器网络协议栈技能目标1.掌握 Z-Stack协议栈的运行机制。 2.掌握Z-Stack协议栈中OSAL的添加新任务的方法。 项目三了解ZigBee无线传感器网络协议栈在实际zigbee无线传感器网络工程的开发过程中首先借助TI提供的协议栈中例程SampleApp,接着根据需要完成的功能,查看支持Z-Stack协议栈的硬件电路图,再查阅数据手册(CC2530的数据手册、Z-Stack协议栈说明、Z-Stack协议栈API函数使用说明等)文件,然后再进行协议栈的修改。 最后,还需要烧录器下载到相应的硬件,实现zigbee无线传感器网络的组建和开发。 设计思路3.1.1协议与协议栈协议定义的是一系列的通信标准,通信双方需要共同按照这一标准进行正常的数据收发;议栈是协议的具体实现形式。 通俗的理解为代码实现的函数库,以便于开发人员调用。

3.1Z-Stack协议栈3.1.1协议与协议栈协议栈是指网络中各层协议的总和,一套协议的规范。 其形象地反映了一个网络中文件传输的过程由上层协议到底层协议,再由底层协议到上层协议。 使用最广泛的是因特网协议栈,由上到下的协议分别是应用层(Http、Tel、DNS、Email等),运输层(TCP、UDP),网络层(IP),链路层(WI-FI、以太网、令牌环、FDDI等)。 3.1Z-Stack协议栈3.1.1协议与协议栈3.1Z-Stack协议栈3.1.1协议与协议栈Zigbee协议栈开发的基本思路如下。 ①借助TI提供的协议栈中例程SampleApp进行二次开发,用户不需要深入研究复杂的zigbee协议栈,这样可以减轻开发者的工作量。 ②Zigbee无线传感器网络中数据采集,只需要用户在应用层加入传感器的读取函数和添加头文件即可实现。 ③如果考虑节能,可以根据数据采集周期(zigbee协议栈例程中已开发了定时程序)进行定时,定时时间到就唤醒zigbee终端节点,终端节点唤醒后,自动采集传感器数据,然后将数据发送给路由器或者直接发给协调器,即监测节点定时汇报监测数据。 ④协调器(网关)根据下发的控制命令,将控制信息转发到具体的节点,即控制节点等待控制命令下发。 3.1Z-Stack协议栈3.1.2使用Z-Stack协议栈传输SampleApp.c 中定义了发送函数static voidSampleApp_SendTheMessage(void)。 该函数通过调用AF_DataRequest来发送数据。

无线传感器网络协议栈研究与设计-第3章

第3章 低功耗无线传感器网络协议栈整体设计 本章的目标是对低功耗环境测控网络协议栈进行整体设计。首先对环境测控系统进行需求分析明确其适用场景和网络设备类型;然后,根据需求分析确定协议栈的设计目标,并选择适合的网络拓扑结构和协议栈的分层架构。协议栈的网络层和MAC 层将作为本章的设计的重点。 3.1 网络需求分析 3.1.1 应用场景介绍 本课题来源于研究生校企合作项目,所设计的低功耗无线传感器协议栈主要应用于环境测控系统中。该系统长期无人值守,其温度、湿度等环境参数由连接无线节点的传感器实时采集并上传至汇聚节点,汇聚节点再通过有线的方式传输至面向用户的管理终端。多个子系统采集的数据最后由各自的管理终端传送至云端处理中心进行数据的保存,整个系统框图如图3.1所示。 云端处理中心 二级中继 汇聚节点 图3.1 环境测控系统框图 图中的环境测控无线网络是执行数据采集和设备控制的主体,也是协议栈发挥作用的区域。一个环境测控无线网络负责一个区域,区域之间有一定的距离,

因此无线网络之间不存在干扰,但无线网络的运行方式一致。该项目处于初期开发阶段,所以本文设计的协议栈只应用于单个环境测控无线网络中。 该课题所涉及的环境测控系统处于室内,人员进出频率低。网络中节点数不超过65个,包含一个汇聚节点。点对点通信的距离要求达到20米。传感器节点以10秒为周期采集并发送环境数据。考虑到室内可能会出现一些特殊设备、隔断等障碍影响通信距离,并使得部分节点处于屏蔽的位置,因此网络通过设置中继节点来扩展通信距离,经过中继后的通信距离要求60米及以上。由于成本等原因,课题设定数据包最多经过两级中继传递,每级中继最多4个,中继数量不超过8个。同时,系统中存在少量控制节点,控制节点连接室内的控温设备来调节室内温度。控制节点由工作人员从软件端下达命令进行开关,因此不具备周期性。该课题要求除汇聚节点、中继节点之外的所有节点能在1000mA/h电池的支持下工作一年以上。为保证数据采集的有效性和传输的可靠性,该课题要求多节点共享信道的丢包率在5%以内。此外,由于环境的特殊性,人员不能随时到场,还要求该环境测控网络中的节点具有安装简单、组网快速、配置容易的特点。以上需求总结如表3.1所示。 表3.1 环境测控系统需求指标 表3.1明确了该环境测控无线网络的要求。通过需求指标能使协议栈的设计更有约束性,设计方向也会更加明确。

(中文)基于无线传感器网络桥梁安全监测系统

基于无线传感器网络的桥梁安全检测系统 摘要 根据桥梁监测无线传感器网络技术的桥梁安全监测系统,以实现方案的安全参数的需要;对整个系统的结构和工作原理的节点集、分簇和关键技术,虽然近年来在无线传感器网络中,已经证明了其潜在的提供连续结构响应数据进行定量评估结构健康,许多重要的问题,包括网络寿命可靠性和稳定性、损伤检测技术,例如拥塞控制进行了讨论。 关键词:桥梁安全监测;无线传感器网络的总体结构;关键技术 1 阻断 随着交通运输业的不断发展,桥梁安全问题受到越来越多人的关注。对于桥梁的建设与运行规律,而特设的桥梁检测的工作情况,起到一定作用,但是一座桥的信息通常是一个孤立的片面性,这是由于主观和客观因素,一些桥梁安全参数复杂多变[1]。某些问题使用传统的监测方法难以发现桥梁存在的安全风险。因此长期实时监测,预报和评估桥梁的安全局势,目前在中国乃至全世界是一个亟待解决的重要问题。 桥梁安全监测系统的设计方案,即通过长期实时桥跨的压力、变形等参数及测试,分析结构的动力特性参数和结构的评价科关键控制安全性和可靠性,以及问题的发现并及时维修,从而确保了桥的安全和长期耐久性。 近年来,桥梁安全监测技术已成为一个多学科的应用,它是在结构工程的传感器技术、计算机技术、网络通讯技术以及道路交通等基础上引入现代科技手段,已成为这一领域中科学和技术研究的重点。 无线传感器网络技术,在桥梁的安全监测系统方案的实现上,具有一定的参考价值。 无线传感器网络(WSN)是一种新兴的网络科学技术是大量的传感器节点,通过自组织无线通信,信息的相互传输,对一个具体的完成特定功能的智能功能的协调的专用网络。它是传感器技术的一个结合,通过集成的嵌入式微传感器实时监控各类计算机技术、网络和无线通信技术、布式信息处理技术、传感以及无线发送收集到的环境或各种信息监测和多跳网络传输到用户终端[2]。在军事、工业和农业,环境监测,健康,智能交通,安全,以及空间探索等领域无线传感器网络具有广泛应用前景和巨大的价值。 一个典型的无线传感器网络,通常包括传感器节点,网关和服务器,如图1

无线传感器网络的应用与影响因素分析

无线传感器网络的应用与影响因素分析 摘要:无线传感器网络在信息传输、采集、处理方面的能力非常强。最初,由于军事方面的需要,无线传感网络不断发展,传感器网络技术不断进步,其应用的范围也日益广泛,已从军事防御领域扩展以及普及到社会生活的各个方面。本文全面描述了无线传感器网络的发展过程、研究领域的现状和影响传感器应用的若干因素。关键词:无线传感器网络;传感器节点;限制因素 applications of wireless sensor networks and influencing factors analysis liu peng (college of computer science,yangtze university,jingzhou434023,china) abstract:wireless sensor networks in the transmission of informa- tion,collecting,processing capacity is very strong.initially,due to the needs of the military aspects of wireless sensor networks,the continuous development of sensor network technology continues to progress its increasingly wide range of applications,from military defense field to expand and spread to various aspects of social life.a comprehensive description of the development

基于无线传感器网络的智能交通系统的设计

一、课题研究目的 针对目前中国的交叉路口多,车流量大,交通混乱的现象研究一种控制交通信号灯的基于无线传感器的智能交通系统。 二、课题背景 随着经济的快速发展,生活方式变得更加快捷,城市的道路也逐渐变得纵横交错,快捷方便的交通在人们生活中占有及其重要的位置,而交通安全问题则是重中之重。据世界卫生组织统计,全世界每年死于道路交通事故的人数约有120 万,另有数100 万人受伤。中国拥有全世界1. 9 %的汽车,引发的交通事故占了全球的15 % ,已经成为交通事故最多发的国家。2000 年后全国每年的交通事故死亡人数约在10 万人,受伤人数约50万,其中60 %以上是行人、乘客和骑自行车者。中国每年由于汽车安全方面所受到的损失约为5180 亿(人民币),死亡率为9 人/ 万·车,因此,有效地解决交通安全问题成为摆在人们面前一个棘手的问题。 在中国,城市的道路纵横交错,形成很多交叉口,相交道路的各种车辆和行人都要在交叉口处汇集通过。而目前的交通情况是人车混行现象严重,非机动车的数量较大,路口混乱。由于车辆和过街行人之间、车辆和车辆之间、特别是非机动车和机动车之间的干扰,不仅会阻滞交通,而且还容易发生交通事故。根据调查数据统计,我国发生在交叉口的交通事故约占道路交通事故的1/ 3,在所有交通事故类型中居首位,对交叉口交通安全影响最大的是冲突点问题,其在很大程度上是由于信号灯配时不合理(如黄灯时间太短,驾驶员来不及反应),以及驾驶员不遵循交通信号灯,抢绿灯末或红灯头所引发交通流运行的不够稳定。随着我国经济的快速发展,私家车也越来越多,交通控制还是延续原有的定时控制,在车辆增加的基础上,这种控制弊端也越来越多的体现出来,造成了十字交叉路口的交通拥堵和秩序混乱,严重的影响了人们的出行。智能交通中的信号灯控制显示出了越来越多的重要性。国外已经率先开展了智能交通方面的研究。 美国VII系统(vehicle infrastructure integration),利用车辆与车辆、车辆与路边装置的信息交流实现某些功能,从而提高交通的安全和效率。其功能主要有提供天气信息、路面状况、交叉口防碰撞、电子收费等。目前发展的重点主要集中在2个应用上: ①以车辆为基础; ②以路边装置为基础。欧洲主要是CVIS 系统(cooperative vehicle infrastructure system)。它有60 多个合作者,由布鲁塞尔的ERTICO 组织统筹,从2006 年2 月开始到2010年6月,工作期为4年。其目标是开发出集硬件和软件于一体的综合交流平台,这个平台能运用到车辆和路边装置提高交通管理效率,其中车辆不仅仅局限于私人小汽车,还包括公共交通和商业运输。日本主要的系统是UTMS 21 ( universal traffic management system for the 21st century , UTMS 21)。是以ITS 为基础的综合系统概念,由NPA (National Police Agency) 等5个相关部门和机构共同开发的,是继20 世纪90 年代初UTMS 系统以来的第2代交通管理系统,DSSS是UTMS21中保障安全的核心项目,用于提高车辆与过街行人的安全。因此,从国外的交通控制的发展趋势可以看出,现代的交通控制向着智能化的方向发展,大多采用计算机技术、自动化控制技术和无线传感器网络系统,使车辆行驶和道路导航实现智能化,从而缓解道路交通拥堵,减少交通事故,改善道路交通环境,节约交通能源,减轻驾驶疲劳等功能,最终实现安全、舒适、快速、经济的交通环境。

线传感器网络常用的通信协议

线传感器网络常用的通信协议(上) 通信协议是无线传感器网络实现通信的基础,无线传感器网络通信协议的设计目的是为了使具体的无线传感器网络通信机制与上层应用分离,为传感器节点提供自组织的无线网络通信功能。 与传统无线网络相比,无线传感器网络的应用环境有诸多不同。无线传感器网络是能量受限的网络,需要使用低功率、短距离的无线通信技术,以节省能源消耗,延长网络寿命。无线传感器网络的通信协议可以采用自定义的通信协议,也可以采用已经形成标准的通信协议,如ZigBee、蓝牙、Wi-Fi,这三种无线通信技术标准都是短距离的无线通信,它们在各方面性能之间有较大差异,ZigBee、蓝牙、Wi-Fi.之间的比较见表5-6。蓝牙技术所能通信的距离非常短,限制了其应用范围;Wi-Fi协议栈所占内存很大、功耗高使其在很多场合不实用。究竟选用什么通信标准,还需要根据系统需求来定。 由表5-6得知,ZigBee是比较适合无线传感器网络应用的,简单阐述自定义通信协议并对ZigBee协议栈进行分析。 1. 自定义通信协议 自定义的通信协议可以采用分层设计,参考OSI参考模型的结构,可以提高系统的灵活性,在保持各层协议之间接口不变的情况下,各层协议可以独立进行开发,并尝试不同的算法。早期提出的一个协议栈包括物理层、数据链路层、网络层、传输层和应用层,另外还有能量管理平台、移动管理平台和任务管理平台,如图5-23所示。 如图524所示的网络协议栈对原始模型进行了改进,加入了定位和时间同步子层,并用倒L型描述这两个子层。另外还增加了QoS管理及网络管理等功能。 2 ZigBee协议栈

目前已经有多家公司推出支持ZigBee的无线收发芯片、ZigBee开发套件及ZigBee协议栈等,如Microchip的PICDEMZ Demo Kit及其ZigBee协议栈、飞思卡尔的MC13191/92开发者初级套件及其协议栈、Figure8的Z-Stack ZigBee 协议栈等,国内也涌现出了不少专门从事ZigBee开发的公司。在此介绍Microchip的ZigBeel.0版协议栈。 1.Microchip ZigBee协议栈简介 Microchip的ZigBee1.0版协议栈设计得可以随着ZigBee的发展而发展,它具有以下特点。 ①基于ZigBee规范的0.8版本。 ②使用Chipcon CC2420 RF收发器,支持2.4GHz频带。 ③支持简化功能设备(Reduced Device,RFD)和协调器。 ④在协调器节点中实现对邻接表和绑定表的非易失性存储。 ⑤支持非时隙的星型网络。 ⑥可以在大多数PICl8系列单片机之间进行移植。 ⑦协同多任务处理架构。 ⑧不依赖于RTOS和应用。 ⑨支持Microchip MPLAB?C18和Hi-Tech PICC-18TM C编译器。 ⑩易于添加或删除特定模块的模块化设计。 当然,该协议栈也不是完全支持ZigBee标准中的所有规范,它有以下限制。 ①不完全符合ZigBee协议。 ②不支持群集和点对点网络。 ③无安全和访问控制功能。 ④无路由器功能。 ⑤不提供标准的配置文件,但是包含创建配置文件所必需的所有原始函数。

无线传感器网络的应用研究

1武警部队监控平台架构介绍与设计 1.1监控系统的系统结构 基站监控系统的结构组成如上图所示,主要由三个大的部分构成,分别是监控中心、监控站点、监控单元。整个系统从资金、功能以及方便维护性出发,我们采用了干点加节点方式的监控方法。 监控中心(SC):SC的定义是指整个系统的中心枢纽点,控制整个分监控站,主要的功能是起管理作用和数据处理作用。一般只在市级包括(地、州)设置相应的监控中心,位置一般在武警部队的交换中心机房内或者指挥中心大楼内。 区域监控中心(SS):又称分点监控站,主要是分散在各个更低等级的区县,主要功能是监控自己所负责辖区的所有基站。对于固话网络,区域监控中心的管辖范围为一个县/区;移动通信网络由于其组网不同于固话本地网,则相对弱化了这一级。区域监控中心SS的机房内的设备配置与SC的差不多,但是不同的是功能不同以及SS的等级低于SC,SS的功能主要是维护设备和监控。 监控单元(SU):是整个监控系统中等级最低的单元了,它的功能就是监控并且起供电,传输等等作用,主要由SM和其他供电设备由若干监控模块、辅助设备构成。SU侧集成有无线传感网络微设备,比如定位设备或者光感,温感设备等等。 监控模块(SM):SM是监控单元的组成部分之一,主要作用监控信息的采集功能以及传输,提供相应的通信接口,完成相关信息的上传于接收。

2监控系统的分级管理结构及监控中心功能 基站监控系统的组网分级如果从管理上来看,主要采用两级结构:CSC集中监控中心和现场监控单元。CSC主要设置在运营商的枢纽大楼,主要功能为数据处理,管理远程监控单元,对告警信息进行分类统计,可实现告警查询和存储的功能。一般管理员可以在CSC实现中心调度的功能,并将告警信息进行分发。而FSU一般针对具体的某一个基站,具体作用于如何采集数据参数并进行传输。CSC集中监控中心的需要对FSU采集的数据参数进行报表统计和分析,自动生产图表并为我们的客户提供直观,方便的可视化操作,为维护工作提供依据,维护管理者可以根据大量的分析数据和报表进行快速反应,以最快的速度发现网络的故障点和优先处理点,将人力资源使用在刀刃上。监控中心CSC系统的功能中,还有维护管理类,具体描述如下: 1)实时报警功能 该系统的报警功能是指发现机房里的各种故障后,通过声音,短信,主界面显示的方式及时的上报给操作者。当机房内的动力环境,空调,烟感,人体红外等等发生变量后,这些数据通过基站监控终端上传到BTS再到BSC。最后由数据库进行分类整理后存储到SQLSEVRER2000中。下面介绍主要的几种报警方式: 2)声音报警 基站发生告警后,系统采集后,会用声卡对不一样的告警类别发出对应的语音提示。比如:声音的设置有几种,主要是以鸣叫的长短来区分的。为便于引起现场维护人员的重视紧急告警可设置为长鸣,不重要的告警故障设置为短鸣。这样一来可以用声音区分故障的等级,比方某地市的中心交换机房内相关告警声音设置,它的开关电源柜当平均电流达到40AH的时候,提示声音设置为长鸣,并立即发生短信告警工单。如果在夜晚机房无人值守的情况下:

基于无线传感网络的大型结构健康监测系统_尚盈

文章编号:1004-9037(2009)02-0254-05 基于无线传感网络的大型结构健康监测系统 尚 盈 袁慎芳 吴 键 丁建伟 李耀曾 (南京航空航天大学智能材料与结构航空科技重点实验室,南京,210016) 摘要:针对大型碳纤维复合材料机翼盒段壁板结构,实现了基于无线传感网络的多点应变结构健康监测系统,采用自组织竞争神经网络成功判别了集中载荷模拟的损伤位置。本系统由传感采集子系统、无线传感网络子系统和终端监控子系统三部分组成。为了降低系统网络功耗及成本,提高系统的稳定性和可靠性,改善传感网络的实时性和同步性,设计了可直接配接无线传感网络节点的低功耗多通道应变传感器信号调理电路和基于无线传感网络的层次路由协议,开发了多通道应变数据采集、网络簇头转发和中继节点接收等主要软件模块。实验证明,相比于传统有线的监测方法和数据采集系统,基于无线传感网络的结构健康监测系统具有负重轻、成本低、易维护和搭建移动方便等优点。 关键词:无线传感网络;结构健康监测;层次路由协议;自组织竞争网络中图分类号:T P2;T P9 文献标识码:A  基金项目:国家“八六三”高技术研究发展计划(2007AA 032117)资助项目;国家自然科学基金(60772072,50420120133)资助项目;航空基金(20060952)资助项目。 收稿日期:2007-09-05;修订日期:2008-04-17 Large -Scale Structural Health Monitoring System Based on Wireless Sensor Networks S hang Ying ,Yuan Shenf ang ,Wu J ian ,Ding J ianw ei ,L i Yaoz eng (T he A ero nautic Key La bo rat or y o f Smart M ater ial and Str uct ur e,N anjing U niv ersit y o f Aer onautics and A str onautics,N anjing,210016,China) Abstract :Aimed at the large-scale structure and anisotropy nature o f the carbon fiber compos-ite material w ing box ,a large-scale structural health m onitoring system based on w ireless sen-sor netw orks is presented .A kind of artificial neural netw ork is designed to distinguish the damag e locatio n simulated by the co ncentrated load .The sy stem co nsists o f the sensor data ac-quisition,the w ireless sensor netw or ks,and the terminal monitoring sub-sy stem s.To im pro ve the performance o f the system ,the signal conditio ning circuit and the hierarchical routing pro -to col are designed based o n w ireless sensor netw orks ,the prog rams of data acquisition and Sink node are ex ploited.Experimental result pro ves that the system has advantag es of flexibili-ty o f deplo yment,low maintenance and deploym ent costs . Key words :w ir eless senso r netw or ks ;str uctural health monitoring ;hierarchical routing ;self -org anizing com petitive netw o rk 引 言 结构健康监测技术是采用智能材料结构的新概念,利用集成在结构中的先进传感/驱动元件网络,在线实时地获取与结构健康状况相关的信息(如应力、应变、温度、振动模态、波传播特性等),结 合先进的信号信息处理方法和材料结构力学建模 方法,提取特征参数,识别结构的状态,包括损伤,并对结构的不安全因素在其早期就加以控制,以消除安全隐患或控制安全隐患的进一步发展,从而实现结构健康自诊断、自修复、保证结构的安全和降低维修费用[1]。 无线传感网络节点具有局部信号处理的功能, 第24卷第2期2009年3月数据采集与处理Jour nal of D ata A cquisition &P ro cessing Vo l.24N o.2M a r.2009

基于ZigBee协议栈的无线传感器网络的设计

基于ZigBee 协议栈的无线传感器网络的设计 徐振峰,尹晶晶,陈小林,周全 (安徽国防科技职业学院机电工程系,安徽六安237011) 摘要:首先介绍了无线传感器网络的基本拓扑结构与传感器节点的结构,详细说明了基于ZigBee 协议栈的无线传感网络的建立过程,包括协调器启动及建立网络、传感器节点启动及加入网络、传感器节点与协调器之间建立绑定以及传感器节点向协调器发送数据的过程。设计了基于ZigBee 协议栈的无线传感网络系统。以采集温度信息为例,协调器能够接收到传感器节点发来的数据,并能通过RS232串口,将收到的数据发送给PC 机进行显示。实验显示在距离 80m 远处,系统仍能保持良好的通信质量。 关键词:ZigBee 协议栈;无线传感器网络;协调器;传感器节点中图分类号:TP393 文献标识码:A 文章编号:1674-6236(2012)05-0075-03 Design of wireless sensor networks based on ZigBee stack XU Zhen -feng ,YIN Jing -jing ,CHEN Xiao -lin ,ZHOU Quan (Department of Mechanical and Electrical Engineering ,Anhui Vocational College of Defense Technology ,Liu ’an 237011,China ) Abstract:First ,the basic topological structures of wireless sensor network and the structure of sensor node are introduced.The starting -up process of wireless sensor network based on ZigBee stack is explained in details ,including startup and establishing network of coordinator ,startup and joining network of sensor node ,binding between sensor nodes and coordinator ,and the process of terminal nodes sending data to coordinator.The wireless sensor network is designed based on ZigBee stack.Taking sampling temperature information as a example ,the coordinator can collect the information from sensor nodes ,and send them to PC by using RS232.The temperature information can be displayed in PC.The experiment shows that good communication quality of this system can be obtained ,although at the distance of 80meters.Key words:ZigBee stack ;wireless sensor network ;coordinator ;sensor node 收稿日期:2012-01-12 稿件编号:201201050 基金项目:安徽省高校省级优秀青年人才基金项目(2010SQRL202) 作者简介:徐振峰(1981—),男,山东郓城人,硕士,讲师。研究方向:无线传感器网络理论及应用。 无线传感器网络(Wireless Sensor Network ,WSN )是由部署在监测区域内大量廉价微型传感器节点组成,通过无线通信方式形成多跳、自组织网络系统,其目的是协作地感知、采集和处理网络覆盖区域中感知对象的信息,并发送给观察者[1]。 目前能够用于短距离无线传感网络的通信技术主要有5种[2]:Wi-Fi 技术、超宽带通信(Ultra Wideband ,UWB )技术、近场通信(Near Field Communication ,NFC )技术、蓝牙以及 ZigBee 技术。其中,ZigBee [3]是基于IEEE802.15.4的一种新兴 短距离无线通信技术,其特点是低功耗、低速率、低复杂度、低成本等。这些特点决定了ZigBee 技术非常适合应用于无线传感网络中,因此ZigBee 技术被认为是最有可能应用于工业监控、传感器网络、家庭监控、安全监控等领域的无线技术。在ZigBee 协议的制定中,IEEE802.15.4无线标准定义了物理层(Physical Layer ,PHY )和介质访问控制层(Medium Access Control Sub -Layer ,MAC ),而ZigBee 协议栈的网络层和应用 层是由ZigBee 联盟制定的。 支持ZigBee 协议的无线通信芯片主要有TI 公司推出的CC2420、CC2430、CC2530以及Freescale 半导体公司推出的MC13191、MC13192及MC13193等芯片。CC2430是世界上首 个单芯片ZigBee 解决方案,除了保持CC2420所包括的优良射频性能之外,其内部还集成了一个增强型8051内核,这使得 CC2430成为市面上最具有竞争力的ZigBee 无线收发芯片。 文中设计了基于ZigBee 协议栈的无线传感网络,该系统包括一个协调器和四个终端传感节点。以采集温度信息为例,实现了无线通信功能。协调器节点通过RS232串口,将收到的数据发送给PC 机进行处理及显示。 1 无线传感网络的结构 1.1 网络体系结构 无线传感网路中的基本单元是传感器节点,根据其在网 络中的所承担的任务不同,传感器节点可以分为3类:协调器、路由器和传感器节点。在网络中,协调器负责建立网络,允许路由器和传感器节点与其绑定,并接收路由器和传感器节点发送来的数据信息,以及传送给PC 机进行处理、存储等;传感器节点负责感知被测对象的物理信息,并将其无线 电子设计工程 Electronic Design Engineering 第20卷Vol.20第5期No.52012年3月Mar.2012 -75-

无线传感器网络技术试题及答案

无线传感器网络技术试题及答案 一、填空题 1.传感器网络的三个基本要素:传感器、感知对象、用户(观察者) 2.传感器网络的基本功能:协作式的感知、数据采集、数据处理、发布感知信息 3.无线传感器节点的基本功能:采集数据、数据处理、控制、通信 4.传感节点中处理部件用于协调节点各个部分的工作的部件。 5.基站节点不属于传感器节点的组成部分 6.定向扩散路由机制可以分为三个阶段:兴趣扩展阶段、梯度建立阶段、路径加强阶段 7.无线传感器网络特点:大规模网络、自组织网络、可靠的网络、以数据为中心的网络、应用相关的网络 8.NTP时间同步协议不是传感器网络的的时间同步机制。 9.IEEE标准主要包括:物理层。介质访问控制层 10.从用户的角度看,汇聚节点被称为网关节点。 11.数据融合的内容主要包括:多传感器的目标探测、数据关联、跟踪与识别、情况评估和预测 13.传感器网络的电源节能方法:_休眠(技术)机制、__数据融合 14.分布式系统协同工作的基础是时间同步机制

15.无线网络可以被分为有基础设施的网络与没有基础设施的网络,在无线传感器网络,Internet网络,WLan网络,拨号网络中,无线传感器网络属于没有基础设施的网络。 16.传感器网络中,MAC层与物理层采用的是IEEE制定的IEEE 协议 17.分级结构的传感器网络可以解决平面结构的拥塞问题 18.以数据为中心特点是传感器网络的组网特点,但不是Ad-Hoc的组网特点 19.为了确保目标节点在发送ACK过程中不与其它节点发生冲突,目标节点使用了SIFS帧间间隔 20.典型的基于竞争的MAC协议为CSMA 二、选择题 1.无线传感器网络的组成模块分为:通信模块、()、计算模块、存储模块和电源模块。A A.传感模块模块C网络模块D 实验模块 2..在开阔空间无线信号的发散形状成()。A A.球状B网络C直线D射线 3.当前传感器网络应用最广的两种通信协议是()D A. B. C. D.

无线传感器网络路由协议

无线传感器网络的关键技术有路由协议、MAC协议、拓扑控制、定位技术等。路由协议: 数据包的传送需要通过多跳通信方式到达目的端,因此路由选择算法是网络层设计的一个主要任务。路由协议主要负责将数据分组从源节点通过网络转发到目的节点,它主要包括两个方面的功能: 1.寻找源节点和目的节点间的优化路径。 2.将数据分组沿着优化路径正确转发。 无线传感器与传统的无线网络协议不同之处,它受到能量消耗的制约,并且只能获取到局部拓扑结构的信息,由于这两个原因,无线传感器的路由协议要能够在局部网络信息的基础上选择合适路径。传感器由于它很强的应用相关性,不同应用中的路由协议差别很大,没有通用的路由协议。无线路由器的路由协议应具备以下特点: (1)能量优先。需要考虑到节点的能量消耗以及网络能量均衡使用的问题。(2)基于局部拓扑信息。WSN为了节省通信能量,通常采用多跳的通信模式,因此节点如何在只能获取到局部拓扑信息和资源有限的情况下实现简单 高效的路由机制,这是WSN的一个基本问题。 (3)以数据为中心。传统路由协议通常以地址作为节点的标识和路由的依据,而WSN由于节点的随机分布,所关注的是监测区域的感知数据,而不是具体哪个节点获取的信息,要形成以数据为中心的消息转发路径。 (4)应用相关。设计者需要针对每一个具体应用的需求,设计与之适应的特定路由机制。 现介绍几种常见的路由协议(平面路由协议、网络分层路由协议、地理定位辅助路由协议): 一、平面路由协议 平面路由协议中,逻辑结构时平面结构,节点间地位平等,通过局部操作和反馈信息来生成路由。当汇聚点向某些区域发送查询并等待来自于这些区域内传感器所采集的相关数据,其中的数据不能采用全局统一的ID,而是要采用基于属性的命名机制进行描述。平面路由的优点是结构简单、鲁棒性(即路由机制的容错能力)较好,缺点是缺乏对通信资源的优化管理,对网络动态变化的反应速度较慢。其中典型的平面路由协议有以下几种: 1.1.洪泛式路由(Flooding): 这是一种传统的网络通信路由协议。这种算法不要求维护网络的拓扑结构和相关路由的计算,仅要求接受到信息的节点以广播形式转发数据包。例如:S节点要传送一段数据给D节点,它需要通过网络将副本传送给它每一个邻居节点,一直到传送到节点D为止或者为该数据所设定的生存期限为零为止。优点在于:实现简单;不需要为保持网络拓扑信息和实现复杂路由发现算法消耗计算资源;适用于鲁棒性较高的场合。但同时也有相应的缺点:一个节点可能得到一个数据的多个副本;存在部分重叠,如果相邻节点同时对某件事作出反应,则两个节点的邻居节点将收到两份数据副本;盲目使用资源,无法作出自适应的路由选择。 为克服Flooding算法这些固有的缺陷,S.Hedetniemi等人提出闲聊式

相关主题