当前位置:文档之家› 数据链路层滑动窗口协议的设计与实现

数据链路层滑动窗口协议的设计与实现

数据链路层滑动窗口协议的设计与实现实验报告

一、实验任务及内容

利用所学数据链路层原理,设计一个滑动窗口协议并在仿真环境下编程实现有噪音信道环境下的可靠的双工通信。信道模型为8000bps 全双工卫星信道,信道传播时延270 毫秒,信道误码率为10-5,信道提供字节流传输服务,网络层分组长度在240~256字节范围。

(1)实现有噪音信道环境下的无差错传输。

(2)运行程序并检查在信道没有误码和存在误码两种情况下的信道利用率。

(3)提高滑动窗口协议信道利用率,根据信道实际情况合理地为协议配置工作参数,包括滑

动窗口的大小和重传定时器时限以及ACK 搭载定时器的时限。

实验环境

Windows 7环境PC机,Microsoft Visual C++ 6.0 集成化开发环境

二、协议设计

协议的分层结构及层服务:

包括物理层,数据链路层和网络层三层。

该实验主要设计数据链路层协议,为实现有噪声环境下高信道利用率传输,我们采用回退n帧(go back n)技术的协议。发送方窗口大小为31;通过捎带确认来完成可靠的数据通信;出现信道误码导致收帧出错时,接受方丢弃所有后续帧,待定时器超时后发送方重发。

该层提供服务:从网络层接受要发送的数据包,将之分拆成数据帧;按一定的成帧方案完成分帧,加校验码,加ack等操作;进行适当的流量判断和拥塞控制;启动定时器将之传递给物理层。数据帧经信道传送给接受方,接受方数据链路层执行与成帧相逆的操作;处理ack信息,终止定时器(或启动ack定时器,ack成帧传送);判断是否为欲接受数据,数据是否出错,提交给网络层。

退回N步工作原理示意图:

实验所形成帧(成帧方案):

DATA Framen

+=========+========+========+===============+========+

| KIND(1) | ACK(1) |SEQ(1) | DATA(240~256) | CRC(4) |

+=========+========+========+===============+========+

ACK Frame

+=========+========+========+

| KIND(1) | ACK(1) | CRC(4) |

+=========+========+========+

NAK Frame

+=========+========+========+

| KIND(1) | ACK(1) | CRC(4) |

+=========+========+========+

CRC校验和的多项式定义:

本次实验采用的CRC校验方案为CRC-32,与IEEE802.3 以太网校验和生成多项式相同。生成多项式为:

x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x1+1

校验和附加在数据帧尾部,接受方用带校验和的数据来逻辑除以生成多项式,余数为零则数据无误码,反之有误码等待发送方重传。

可靠通信和误码控制方案:

通过捎带确认来完成可靠的数据通信;出现信道误码导致收帧出错时,接受方丢弃所有后续帧,此时发送方长久接受不到确认信息,引发定时器超时后发送方重发;接受方无数据传送导致发送方无法收到捎带确认时,接受方确认定时器超时,构造一确认帧单独传送。

三、软件设计

给出程序的数据结构,模块之间的调用关系和功能,程序流程。

本次实验我们对go-back-N协议进行了编写,描述如下:

1.数据结构:

typedefenum {false,true} boolean;//bloolean type

typedef unsigned char seq_nr;//sequence or ack numbers

typedef unsigned char packet[PKT_LEN];//用数组存放数据

/* FRAME kind */

#define Data 1

#define Ack 2

#define Nak 3

static intphl_ready: //物理层状态

next_frame_to_send; // MAX_SEQ > 1; used for outbound stream, and

initianize next frame going out ack_expected; // oldest frame as yet unacknowledged, and

initianize next ack expected inbound frame_expected; // next frame expected on inbound stream, and

initialize number of frame expected

inbound

buffer[MAX_SEQ+1]; // buffers for the outbound stream nbuffered; // output buffers currently in use, and

initially no packets are buffered bufferLen[MAX_SEQ+1]//bufferLen 存储每个buffer中数据的有效长度

typedefstruct{ //帧结构

unsigned char kind;

seq_nrack;

seq_nrseq;

packetinfo;

unsigned char crc[4];

}frame;

2.模块结构:给出程序中所设计的子程序完成的功能,子程序每个参数的意义。

A)static boolean between (seq_nra,seq_nrb,seq_nr c)//判断b是否是在a、c之间的帧

B)static void put_frame(unsigned char *frame, intlen)//crc编码并向物理层发送

C)send_data(unsigned char kind,seq_nrframe_nr,seq_nrframe_expected,packet buffer[],intdlen[]) //生成帧

D)int main() // 主函数,分为五个事件

(1) NETWORK_LAYER_READY,事件发生后从网络层读数据,成帧;若当前物理层可用,发送。

(2) PHYSICAL_LAYER_READY,事件发生后,若有未发送的帧,发送,否则置物理层状态为可用。

(3) DATA_INCOMING,事件发生后,来了arg个字节的数据,每接受一个数据,判断是

否为帧尾;若为帧尾,提取一帧,去掉填充,进行校验;若校验结果正确,处理ack,然后处理数据。接受完arg个字节,跳出。

(4) ACK_TIMEOUT,事件发生后,产生一个不含数据的ack帧,等待直到物理层有效,发送。

(5) DATA_TIMEOUT,事件发生后,重发ack_expected和next_frame_to_send之间的帧。

3.算法流程:画出流程图,描述算法的主要流程。

四、实验结果分析

(1) 描述你所实现的协议软件是否实现了误码信道环境中无差错传输功能

此协议软件实现了误码信道环境中无差错传输功能

(2) 程序的健壮性

在较低误码率的信道条件下,该程序运行平稳,未出现任何差错,健壮性良好,在高误码率的信道条件下,程序运行有时会出现中断,但大多数时候均运行超过二十分钟以上,故本程序健壮性良好,但仍有值得改进之处。

(3)协议参数的选取:

滑动窗口的大小为7,重传定时器的时限2000,ACK 搭载定时器的时限为300。

在go_back_n协议中(假设接受方一直有数据发送,即无ack定时器超时现象),滑动窗口的大小M,信道传输时延a,发送速率c,帧大小f在满足如下关系时信道利用率(M*(f/c)/[2a+2(f/c)])接近100%:M>=[2a+2*(f/c)]/(f/c);由于实际数据传送很可能在某段时间类接受方无数据反送,涉及ack帧单独传送问题,故一般信道利用率不可能达到100%,但M的选择至少要满足公式。至于防止M过大的问题,可通过实际测试的结果分析来得到合适的M值。滑动窗口大小的选择直接涉及到信道利用率和数据拥塞的问题;若太小,会导致信道空闲,利用率很低;若太大,数据发送过快,会造成接受方数据链路层来不及处理,数据物理层及信道发生拥塞现象导致数据丢失,出错率增大,重传率高。8000kbps的信道发送256字节的帧需要 256*8/8000 = 256ms (256+270*2)/256 = 3.X,最大窗口应该7就行了.

重传定时器的大小由发送速率、信道时延及接受方的发送频率等确定,太小会频繁重发,太大也会降低信道利用率。结合多项测试最终定为2000ms。

ack搭载定时器的时限由本站的发送频率决定,一方面,为了节省带宽应该尽量搭载使用。另一方面当本站长时间无数据发送时应该尽量早点发送ack帧。经过数项测试,定位300ms。

(4)理论分析:

无差错条件下分组层能获得的最大信道利用率应该是256/262*100%=97.7,而在误码率为1e-5的情况下应为256/262(1+262*8*0.00001)=95.5。

(5)实验结果分析:你的程序运行实际达到了什么样的效率,比对理论推导给出的结论,有没有差距?给出原因。有没有改进的办法?如果没有时间把这些方法付诸编程实施,介绍你的方案。

实验成果离预期效果存在差距,尤其在有误码的条件下,信道利用率与理论之相比相差很大。原因有几个方面:填充字节和发送时候的延迟,这一方面无法缩短;信道空闲,只是因为窗口大小、重传定时器的时限和ACK 搭载定时器的时限的选择不是很恰当,这方面,需要多做测试来确定发送端、接收端的延时,再确定具体数值;另外,ack的发送可能有些滞后,没有一个非常合理的发送机制。

还有一点,从网络层受到数据后,我是把数据成帧后存起来的,现在看来,考虑到ack 的更新,在发送时再成帧更有效率些。

(6) 存在的问题:在“表3 性能测试记录表”中给出了7 种测试方案,在测试中你的程序有没有失败,或者,虽未失败,但表现出来的性能仍有差距,你的程序中还存在哪些问题?

测试中没有失败,不过性能差距挺大。主要是超时时限和窗口大小的问题。

五、研究和探索的问题

1.start_timer()不是在启动时就计时,而是在物理层发送了才开始计时;相对的,

start_ack_timer()是以启动就开始计时。前者要考虑发送缓冲区的等待时间,而后者考虑的是ack是否被装到了帧上。

2.重传时限设定得比较长,大部分情况下都不会超时。实践证明,这种情况下效率相对更高一点。

3.流量控制方面,首先窗口的大小可以控制。然后发送和接收缓存区的大小也限制了流量。

六、实验总结和心得体会

(1) 完成本次实验的实际上机调试时间是多少?

三天,第一天花了大概7小时讨论程序结构以及函数的调用,第二天完成编程并调试,第三天写文档和性能测试,

(2) 编程工具方面遇到了哪些问题?包括Windows环境和VC软件的安装问题。

该实验要用vc++6.0,并且要在doc系统运行生成的exe文件。

(3) 编程语言方面遇到了哪些问题?包括C语言使用和对C语言操控能力上的问题。

大概没遇到什么问题。。遇到的只是一些函数的调用上。

(4)协议方面遇到了哪些问题?包括协议机制的设计错误,发现协议死锁,或者不能正确工作,协议参数的调整等问题。

成帧时,开始我们帧结构是(ack 帧序号数据长度数据内容校验和),长度在256时成了0,后来在成帧时去掉了数据长度这项。

(5) 开发库方面遇到了哪些问题?包括库程序中的BUG,库函数文档不够清楚导致误解,库函数设计在所提供的功能结构上的缺憾导致编程效率低下。这些问题或建议影响不同模块之间功能界限的划分。

一开始对NETWORK_LAYER_READY和PHYSICAL_LAYER_READY理解不清晰,不明白两者各自完成什么功能。

(6) 总结本次实验,你在C 语言方面,协议软件方面,理论学习方面,软件工程方面等哪些方面上有所提高?

C语言方面,加深了对数组及结构定义的理解。虽然意图将结构强制转换为字符数组失败,但更了解了结构的定义和存储特点及鱼数组的区别。另外是培养良好的编程风格是很重要的,在一个结构比较复杂的程序中,有意义的变量命名能让人理清条理,更好的掌握总体框架;而清楚的格式便于差错。

协议软件方面,了解了通用性的重要。一开始光顾着思考自己写的东西,忘了弄清老师给的函数、参数等,很费了一番力气。开始没有太明白NETWORK_LAYER_READY和PHYSICAL_LAYER_READY的意义,卡了很长一段时间。编写协议软件,很重要的一步是弄清接口函数和参数的用途,注意通用性。还有协议软件要有高效性和健壮性,否则没有使用价值。

通过自己编写一个协议,自己对协议本身的理解也加深了。更加深入的把握了协议的性质,其实不同的协议基本目的,实现过程都有一定的相似性。这对学习其他协议也有很大的好处。

学会了如何增加效益。比如搭载ack的协议中,两边都连续发和一边发发停停的情况下,前者在ack超时的时限长的时候效益更高,而后者在时限短的时候更好,要使双方都达到一个比较理想的数值,就要找到一个中间值。这是件很费时的事情。

课程设计报告滑动窗口协议仿真

课程设计报告滑动窗口 协议仿真 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

滁州学院 课程设计报告课程名称:计算机网络 设计题目:滑动窗口协议仿真 系别:计算机与信息工程学院 专业:计算机科学与技术 组别:第五组 起止日期: 2011年11月24日~2011年12月7日 指导教师:赵国柱 计算机与信息工程学院二○一一年制

课程设计任务书 一. 引言 二. 基本原理 窗口机制 1bit滑动窗口协议

后退N协议 选择重传协议 流量控制 三. 需求分析 课程设计题目 开发环境 运行环境 课程设计任务及要求 界面要求 网络接口要求 四. 详细设计 结构体的定义 发送方的主要函数 接受方的主要函数 五. 源代码 发送方的主要代码 接收方的主要代码 六. 调试与操作说明 致谢 [参考文献] 课程设计的主要内容1.引言

早期的网络通信中,通信双方不会考虑网络的拥挤情况直接发送数据。由于大家不知道网络拥塞状况,一起发送数据,导致中间结点阻塞掉包,谁也发不了数据。在数据传输过程中,我们总是希望数据传输的更快一些,但如果发送方把数据发送的过快,接收方就可能来不及接收,这就造成数据的丢失。因此就有了滑动窗口机制来解决这些问题。早期我们使用的是1bit滑动窗口协议,一次只发送一个帧,等收到ack确认才发下一个帧,这样对信道的利用率太低了。因此提出了一种采用累积确认的连续ARQ协议,接收方不必对收到的帧逐个发送ack 确认,而是收到几个帧后,对按序到达的最后一个帧发送ack确认。同1bit滑动窗口协议相比,大大减少了ack数量,并消除了延迟ack对传输效率的影响。但是,这会产生一个新的问题,如果发送方发送了5个帧,而中间的第3个帧丢失了。这时接收方只能对前2个帧发出确认。发送方无法知道后面三个帧的下落,只好把后面的3个帧再重传一次,这就是回退N协议。为了解决这个问题,又提出了选择重传协议。当接收方发现某帧出错后,继续接受后面送来的正确的帧,只是不交付它们,存放在自己的缓冲区中,并且要求发送方重传出错的那一帧。一旦收到重传来的帧后,就可以将存于缓冲区中的其余帧一并按正确的顺序递交给主机。 2.基本原理 窗口机制

课程设计报告-滑动窗口协议仿真

滁州学院 课程设计报告 课程名称:计算机网络 设计题目:滑动窗口协议仿真 系别:计算机与信息工程学院 专业:计算机科学与技术 组别:第五组 起止日期: 2011年11月24日~2011年12月7日指导教师:赵国柱 计算机与信息工程学院二○一一年制

课程设计任务书

一. 引言 二. 基本原理 2.1 窗口机制 2.2 1bit滑动窗口协议 2.3 后退N协议 2.4 选择重传协议 2.5 流量控制 三. 需求分析 3.1 课程设计题目 3.2 开发环境 3.3 运行环境 3.4 课程设计任务及要求 3.5 界面要求 3.6 网络接口要求 四. 详细设计 4.1 结构体的定义 4.2 发送方的主要函数 4.3 接受方的主要函数 五.源代码 5.1 发送方的主要代码 5.2 接收方的主要代码 六. 调试与操作说明 致谢 [参考文献] 课程设计的主要内容

1.引言 早期的网络通信中,通信双方不会考虑网络的拥挤情况直接发送数据。由于大家 不知道网络拥塞状况,一起发送数据,导致中间结点阻塞掉包,谁也发不了数据。在 数据传输过程中,我们总是希望数据传输的更快一些,但如果发送方把数据发送的过快, 接收方就可能来不及接收,这就造成数据的丢失。因此就有了滑动窗口机制来解决这些 问题。早期我们使用的是1bit滑动窗口协议,一次只发送一个帧,等收到ack确认 才发下一个帧,这样对信道的利用率太低了。因此提出了一种采用累积确认的连续ARQ 协议,接收方不必对收到的帧逐个发送ack确认,而是收到几个帧后,对按序到达的最后一 个帧发送ack确认。同1bit滑动窗口协议相比,大大减少了ack数量,并消除了延迟ack 对传输效率的影响。但是,这会产生一个新的问题,如果发送方发送了5个帧,而中间的第 3个帧丢失了。这时接收方只能对前2个帧发出确认。发送方无法知道后面三个帧的下落, 只好把后面的3个帧再重传一次,这就是回退N协议。为了解决这个问题,又提出了选择重 传协议。当接收方发现某帧出错后,继续接受后面送来的正确的帧,只是不交付它们, 存放在自己的缓冲区中,并且要求发送方重传出错的那一帧。一旦收到重传来的帧后, 就可以将存于缓冲区中的其余帧一并按正确的顺序递交给主机。 2.基本原理 2.1 窗口机制 滑动窗口协议的基本原理就是在任意时刻,发送方都维持了一个连续的允许发送的帧的序号,称为发送窗口;同时,接收方也维持了一个连续的允许接收的帧的序号,称为接收窗口。发送窗口和接收窗口的序号的上下界不一定要一样,甚至大小也可以不同。不同的滑动窗口协议窗口大小一般不同。发送方窗口内的序号代表了那些已经被发送,但是还没有被确认的帧,或者是那些可以被发送的帧。接受方为其窗口内的每一个序号保留了一个缓冲区。与每个缓冲区相关联的还有一位,用来指明该缓冲区是满的还是空的。 若从滑动窗口的观点来统一看待1比特滑动窗口、后退n及选择重传三种协议,它们的差别仅在于各自窗口尺寸的大小不同而已。1比特滑动窗口协议:发送窗口=1,接收窗口=1;后退N协议:发送窗口>1,接收窗口=1;选择重传协议:发送窗口>1,接收窗口>1。 2.2 1bit滑动窗口协议 当发送窗口和接收窗口的大小固定为1时,滑动窗口协议退化为停等协议(stop-and-wait)。该协议规定发送方每发送一帧后就要停下来,等待接收方已正确接收的确认(acknowledgement)返回后才能继续发送下一帧。由于接收方需要判断接收到的帧是新发的帧还是重新发送的帧,因此发送方要为每一个帧加一个序号。由于停等协议规定只有一帧完全发送成功后才能发送新的帧,因而只用一比特来编号就够了。其发送方和接收方运行的流程图如图所示。

数字图像处理实验报告

数字图像处理实验报告

实验一 数字图像的基本操作和灰度变换 一、 实验目的 1. 了解数字图像的基本数据结构 2. 熟悉Matlab 中数字图像处理的基本函数和基本使用方法 3. 掌握图像灰度变换的基本理论和实现方法 4. 掌握直方图均衡化增强的基本理论和实现方法 二、实验原理 1. 图像灰度的线性变换 灰度的线性变换可以突出图像中的重要信息。通常情况下,处理前后的图像灰度级是相同的,即处理前后的图像灰度级都为[0,255]。那么,从原理上讲,我们就只能通过抑制非重要信息的对比度来腾出空间给重要信息进行对比度展宽。 设原图像的灰度为),(j i f ,处理后的图像的灰度为),(j i g ,对比度线性展宽的原理示意图如图1.1所示。假设原图像中我们关心的景物的灰度分布在[a f , b f ]区间内,处理后的图像中,我们关心的景物的灰度分布在[a g ,b g ]区间内。在这里)(a b g g g -=?()b a f f f >?=-,也就是说我们所关心的景物的灰度级得到了展宽。 根据图中所示的映射关系中分段直线的斜率我们可以得出线性对比度展 b g a g a b )j 图1.1 对比度线性变换关系

宽的计算公式: ),(j i f α, a f j i f <≤),(0 =),(j i g a a g f j i f b +-)),((, b a f j i f f <≤).,( (1-1) b b g f j i f c +-)),((, 255),(<≤j i f f b (m i ,3,2,1 =;n j ,3,2,1 =) 其中,a a f g a = ,a b a b f f g g b --=,b b f g c --=255255,图像的大小为m ×n 。 2. 直方图均衡化 直方图均衡化是将原始图像通过某种变换,得到一幅灰度直方图为均匀分布的新图像的方法。 离散图像均衡化处理可通过变换函数: 来实现。 三、实验步骤 1.图像灰度线性变换的实现 (1)读入一幅灰度图像test1.tif ,显示其灰度直方图。 新建M 文件,Untitled1.m ,编辑代码如下。 得到读入图像test1和它的灰度直方图。

滑动窗口协议分析与实现

滑动窗口协议分析与实现 目录 1 引言 (2) 1.1 滑动窗口协议概述 (2) 1.2 本次设计任务 (2) 2 滑动窗口协议介绍 (3) 2.1 滑动窗口协议工作原理 (3)

1 引言 1.1 滑动窗口协议概述 滑动窗口协议可能是计算机网络中最著名的算法,它是TCP使用的一种流量控制方法。滑动窗口协议也称为回退N步协议Go-Back-N(GBN)协议,它可以有三个不同的功能,第一个功能,即在不可靠链路上可靠地传输帧。(一般来说,该算法被用于在一个不可靠的网络上可靠地传输消息。)这是该算法的核心功能。 滑动窗口算法的第二个功能是用于保持帧的传输顺序。这在接收方比较容易实现,因为每个帧有一个序号,接收方要保证已经向上层协议传递了所有序号比当前帧小的帧,才向上传送该当前帧。即,接收方缓存了(即没有传送)错序的帧。 滑动窗口算法的第三个功能是,它有时支持流量控制(flowcontrol),它是一种接收方能够控制发送方使其降低速度的反馈机制。这种机制用于抑制发送方发送速度过快,即抑制传输比接收方所能处理的更多的数据。 滑动窗口协议,允许发送方传输多个分组而不需等待确认,但它也受限于在流水账中未确认的分组数不能超过最大允许数N。只有在接收窗口向前滑动,即接收方向发送方发送了确认反馈,同时发送方收到确认消息时,发送窗口才能向前滑动。 1.2 本次设计任务 本次的设计任务是根据滑动窗口协议的工作原理,在WebRTC的基础上,用C++语言编写一个滑动窗口协议的程序。 要求该程序实现滑动窗口协议的基本功能功能,如:发送帧被接收与否的判断,帧超时重发,帧缓存等。同时需要设计一个测试机制,以检测该程序的正确性、可靠性。

课程设计报告滑动窗口协议仿真

滁州学院 课程设计报告 课程名称: 计算机网络 第五组 起止日期:2011年n 月24 口~2011年12月7 n 指导教师: 设计题目: 滑动窗口协议仿贞 别: 计算机与信息工程学院 业: 计算机科学与技术 计算机与信息工程学院二O —一年制 别: 赵国柱

课程设计任务书 一.引言二-基本原理 窗口机制 Ibit滑动窗口协议后退N协议选择重传协议流量控制三.需求分析 课程设计题目开发环境

运行环境 课程设计任务及要求 界面要求 网络接口要求 0. 详细设计 结构体的定义 发送方的主要函数 接受方的主要函数 五. 源代码 发送方的主要代码 接收方的主要代码 调试与操作说明 致谢 [参考文献] 课程设计的主要内容 L引言 早期的网络通信中,通信双方不会考虑网络的拥挤情况直接发送数据。由于大家不知道网络拥塞状况,一起发送数据,导致中间结点阻塞掉包,谁也发不了数据。在数据传输过程中,我们总是希望数据传输的更快一些,但如果发送方把数据发送的过快,接收方就可能來不及接收,这就造成数据的丢失。因此就有了滑动窗口机制来解决这些问题。早期我们使用的是Ibit滑动窗口协议,一次只发送一个帧, 等收到ack确认才发下一个帧,这样对信道的利用率太低了。因此提出了一种采用累积确认的连续ARQ协议,接收方不必对收到的帧逐个发送 ack确认,而是收到儿个帧后,对按序到达的最后一个帧发送ack确认。 同Ibit滑动窗口协议相比,大大减少了 ack数量,并消除了延迟ack对传输效率的影响。但是,这会产生一个新的问题,如果发送方发送了 5个帧,而中间的第3个帧丢失了。这时接收方只能对前2个帧发出确认。发送方无法知道后面三个帧的下落,只好把后面的3个帧再重传一次,这就是回退N协议。为了解决这个问题,乂提出了

图像处理实验报告模板

桂林电子科技大学 实验报告 一、实验目的 1、掌握基本的图像处理方法,包括读取、写入、显示、剪切、运算以及快操作 等等。 2、掌握常用的图像变换方法,分析变换结果。 二、实验内容 编写程序,在Matlab下调试运行,并注意观察分析结果。 1、使用imread函数分别读入图象cameraman.tif 、canoe.tif,并使用subplot 和imshow函数进行显示。再使用imcrop对第一幅图片进行剪切,并保存成文件。 2、申明向量X和矩阵A,使用二维傅立叶变换和fftshift函数进行处理,观察向量和矩阵结果。 3、创建一个1000*1000的全0图像,其中选择某矩形区域设置其象素为1(350:649,475:524),对该二值图逆时针旋转45°角,比较旋转前后的图像和傅里叶变换频谱。 三、实验设备、环境 计算机 四、实验原理 1、图像平滑算法 (1) 简单平均法:

设某像素的灰度值为,迭加噪声后,一幅含噪声的图像可表示为 现取以为中心的邻域S ——NN 方形窗口,在S 域内进行局部平均,得 式中,N 的平方为窗口内像素总数。令 ,则 式中,加权函数 (2)中值滤波: 中值滤波是一种非线性的信号处理方法。中值滤波器在1971 年由J.w.Jukey 首先提出并应用在一维信号处理技术(时间序列分析)中,后来被二维图象信号处理技术所引用。中值滤波在一定的条件下可以克服线性滤波器如最小均方滤波、均直滤波等带来的图象细节模糊,而且对滤除脉冲干扰及图象扫描噪声最为有效。由于在实际运算过程中不需要图象的统计特征,因此这也带来不少方便。但是对于一些细节多,特别是点、线、尖顶细节多的图象不宜采用中值滤波。中值滤波一般采用一个含有奇数个点的滑动窗口,将窗口中各点灰度值的中值来替代值定点(一般是窗口的中心点)的灰度值。对于奇数个元素,中值是指按大小排序后,中间的数值;对于偶数个元素,中值是指排序后中间两个元素灰度值的平均值。 一般选用3*3或5*5窗口,形状可分为方形或十字形,如下图所示。 (a) 方形 (b) 十字形 图2-1 二维中值滤波窗口形状 二维中值滤波可表示为

滑动窗口实验

计算机通信网络实验 滑动窗口实验 学院: 班级: 学号: 姓名: 2012年11月14日

一、实验目的 实现一个滑动窗口协议的数据传送部分,目的在于使学生更好地理解基本滑动窗口协议的基本工作原理,掌握计算机网络协议的基本实现技术。 二、原理简介 (1)窗口机制 滑动窗口协议的基本原理就是在任意时刻,发送方都维持了一个连续的允许发送的帧的序号,称为发送窗口;同时,接收方也维持了一个连续的允许接收的帧的序号,称为接收窗口。发送窗口和接收窗口的序号的上下界不一定要一样,甚至大小也可以不同。不同的滑动窗口协议窗口大小一般不同。 发送方窗口内的序列号代表了那些已经被发送,但是还没有被确认的帧,或者是那些可以被发送的帧。 (2)1比特滑动窗口协议 当发送窗口和接收窗口的大小固定为1时,滑动窗口协议退化为停等协议(stop-and-wait)。该协议规定发送方每发送一帧后就要停下来,等待接收方已正确接收的确认(acknowledgement)返回后才能继续发送下一帧。由于接收方需要判断接收到的帧是新发的帧还是重新发送的帧,因此发送方要为每一个帧加一个序号。由于停等协议规定只有一帧完全发送成功后才能发送新的帧,因而只用一比特来编号就够了。

(3)后退n协议 由于停等协议要为每一个帧进行确认后才继续发送下一帧,大大降低了信道利用率,因此又提出了后退n协议。后退n协议中,发送方在发完一个数据帧后,不停下来等待应答帧,而是连续发送若干个数据帧,即使在连续发送过程中收到了接收方发来的应答帧,也可以继续发送,且发送方在每发送完一个数据帧时都要设置超时定时器,只要在所设置的超时时间内仍收到确认帧,就要重发相应的数据帧。如:当发送方发送了N个帧后,若发现该N帧的前一个帧在计时器超时后仍未返回其确认信息,则该帧被判为出错或丢失,此时发送方就不得不重新发送出错帧及其后的N帧。 三、实验步骤 1.编写滑动窗口协议的实现程序; 2.在模拟实现,调试并运行自己编写的协议实现程序; 3.了解协议的工作轨迹,如出现异常情况,在实验报告中写出原因分析。 四、实验过程 1、程序功能及设计思路 功能概述: 用客户端/服务器模式代表A站、B站。先由客户端输入服务器IP地址,然后客户端和服务器之间建立连接。在服务器中可以自行设置发送窗口的大小(如果需要实现的是停等式协议,那么就将发送窗口设为1),设置完后,服务器开始向客户端根据滑动窗口(停等式)的协议规定发送数据帧,同时启动计时器,客户端收到数据帧后马上向服务器发送确认帧,服务器如果没有及时收到客户端的确认帧,就要返回到出错的地方进行重发。 实现滑动窗口协议的算法: 发送端: 1、socket初始化,绑定端口,监听,接受连接; 2、设置发送窗口大小winsize; 3、启动定时器,设置时间为0.2s*winsize; 4、组帧并发送数据,即设置序号SN、数据data、长度msglen,之后发送一个窗口中的帧,每发送一个数据SN++;若发送完毕,则执行第6步; 5、接收确认帧,每收到一个正确的确认帧,则改变滑动窗口上下限,若正确接收所有确认帧,则关闭定时器,返回第3步;若接收超时或有确认帧丢失,则SN=right_number,返回第3步; 6、关闭socket,重新建立新的进程,等待下一个连接,返回第2步。 接收端: 1、socket初始化,连接服务器; 2、接收数据帧,将data存入缓存recvBuf,RN=SN+1; 3、发送确认帧,若接收完毕,则关闭socket,否则返回第二步。 实现停等式协议的算法: 和上述滑动窗口协议的算法类似,只需在发送端的第二步中将发送窗口大小winsize设置为1即可。

滑动窗口协议模拟程序的设计与实现

长沙理工大学 《网络协议编程》课程设计报告 梁碧莹 学院计算机与通信工程专业网络工程 班级网络08-02 学号200858080205 学生姓名梁碧莹指导教师王静 课程成绩完成日期2011年7 月 2 日

课程设计任务书 计算机与通信工程学院网络工程专业

课程设计成绩评定 学院计算机通信工程专业网络工程 班级网络08-02 班学号200858080205 学生姓名梁碧莹指导教师王静 课程成绩完成日期2011年7 月2 日指导教师对学生在课程设计中的评价 指导教师对课程设计的评定意见

滑动窗口协议模拟程序的设计与实现 学生:梁碧莹指导老师:王静 摘要:本文主要介绍如何根据滑动窗口协议的原理,在Visual C++的平台上设计一个滑动窗口协议模拟程序,并最终使该程序得以实现。本次程序设计分两部分:第一部分是发送方,第二部分是接收方。通过发送方和接收方之间的数据帧传输模拟,学习滑动窗口协议控制流量的原理和方法,以及滑动窗口协议的工作机制。 关键词:滑动窗口协议流量控制工作机制模拟程序 Design and Implementation of Sliding Window Protocol Procedures Student: Liang Biying Instructor: Wang Jing Abstract: This paper describes the principle of Sliding Window Protocol and how to design and implement a procedure about the Sliding Window Protocol. The program design in two parts, one is the sender, the other is the receiver. After all, studying the principle and method of how the Sliding Window Protocol control the flow, and how the Sliding Window Protocol works through the transmission of data between the sender and the receiver. Keywords: Sliding window protocol Flow control Working mechanism Simulation program

滑动窗口的仿真协议书范本

计算机网络课程设计书

计算机网络课程设计说明书 (封面) 学院名称:计算机与信息工程学院班级名称:网络工程一班 学生: 学号: 201321 题目:滑动窗口协议仿真指导教师 姓名:邵雪梅 起止日期: 2015.6.23-2015.6.29

第一部分:正文部分 一,选题背景 早期的网络通信中,通信双方不会考虑网络的拥挤情况直接发送数据。由于大家不知道网络拥塞状况,一起发送数据,导致中间结点阻塞掉包,谁也发不了数据。在数据传输过程中,我们总是希望数据传输的更快一些,但如果发送方把数据发送的过快,接收方就可能来不及接收,这就造成数据的丢失。因此就有了滑动窗口机制来解决这些问题。早期我们使用的是1bit滑动窗口协议,一次只发送一个帧,等收到ack确认才发下一个帧,这样对信道的利用率太低了。因此提出了一种采用累积确认的连续ARQ协议,接收方不必对收到的帧逐个发送ack确认,而是收到几个帧后,对按序到达的最后一个帧发送ack确认。 同1bit滑动窗口协议相比,大大减少了ack数量,并消除了延迟ack对传输效率的影响。但是,这会产生一个新的问题,如果发送方发送了5个帧,而中间的第3个帧丢失了。这时接收方只能对前2个帧发出确认。发送方无法知道后面三个帧的下落,只好把后面的3个帧再重传一次,这就是回退N协议。为了解决这个问题,又提出了选择重传协议。当接收方发现某帧出错后,继续接受后面送来的正确的帧,只是不交付它们,存放在自己的缓冲区中,并且要求发送方重传出错的那一帧。一旦收到重传来的帧后,就可以将存于缓冲区中的其余帧一并按正确的顺序递交给主机。本文主要介绍如何根据滑动窗口协议的原理,在Visual C++的平台上设计一个滑动窗口协议模拟程序,并最终使该程序得以实现。本次程序设计分两部分:第一部分是发送方,第二部分是接收方。通过发送方和接收方之间的数据帧传输模拟,学习滑动窗口协议控制流量的原理和方法,以及滑动窗口协议的工作机制。

计算机网络抓包实验报告

实验报告二

学号1040407105 实验项目 名称 利用Wireshark 进行抓包分析 上面的截图是抓取到的包,下面分别针对其中的一个TCP,UDP和ICMP进行分析 1.TCP TCP:Transmission Control Protocol 传输控制协议TCP是一种面向连接(连接导向)的、可靠的、基于字节流的运输层(Transport layer)通信协议,由IETF的RFC 793 说明(specified)。在简化的计算机网络OSI模型中,它完成第四层传输层所指定的功能。 在因特网协议族(Internet protocol suite)中,TCP层是位于IP层之上,应用层之下的中间层。不同主机的应用层之间经常需要可靠的、像管道一样的连接,但是IP层不提供这样的流机制,而是提供不可靠的包交换。 应用层向TCP层发送用于网间传输的、用8位字节表示的数据流,然后TCP把数据流分割成适当长度的报文段(通常受该计算机连接的网络的数据链路层的最大传送单元(MTU)的限制)。之后TCP把结果包传给IP层,由它来通过网络将包传送给接收端实体的TCP层。TCP为了保证不发生丢包,就给每个字节一个序号,同时序号也保证了传送到接收端实体的包的按序接收。然后接收端实体对已成功收到的字节发回一个相应的确认(ACK);如果发送端实体在合理的往返时延(RTT)内未收到确认,那么对应的数据(假设丢失了)将会被重传。TCP用一个校验和函数来检验数据是否有错误;在发送和接收时都要计算校验和。

学号1040407105 实验项目 名称 利用Wireshark 进行抓包分析 首先,TCP建立连接之后,通信双方都同时可以进行数据的传输,其次,他是全双工的;在保证可靠性上,采用超时重传和捎带确认机制。 在流量控制上,采用滑动窗口协议,协议中规定,对于窗口内未经确认的分组需要重传。 在拥塞控制上,采用慢启动算法。 对于上面的抓包,选取其中的一个TCP进行分析 Source:119.147.91.131 Destination:180.118.215.175 Length:56 Info:http>500001[FIN,ACK] Seq=41,Ack=2877,win=66528 Len=0 1.1抓到的数据链路层中的帧 Frame 211:56bytes 即所抓到的帧的序号为211,大小是56字节 1.2 IP层中的IP数据报 Header Length:20bytes 即首部长度为20个字节;

滑动窗口实验报告

滑动窗口实验报告(含源码) 一、实验目的 1.实现一个数据链路层协议的数据传送部分。 2.更好地理解数据链路层协议中的“滑动窗口”技术的基本工作 原理。 3.掌握计算机网络协议的基本实现技术。 二、实验要求 在一个数据链路层的模拟实现环境中,用C语言实现下两个数据链路层协议。 1.1比特滑动窗口协议 2.回退N帧滑动窗口协议 三、实验内容 充分理解滑动窗口协议,根据滑动窗口协议,模拟滑动窗口协议中发送端的功能,对系统发送的帧进行缓存并加入窗口等待确认,并在超时或者错误时对部分帧进行重传。 编写停等及退回N滑动窗口协议函数,响应系统的发送请求、接收帧消息以及超时消息,并根据滑动窗口协议进行相应处理。四、源代码及注释 #include "" #include using namespace std; extern void SendFRAMEPacket(unsigned char* pData, unsigned int len); ead = *p;

buffer[last_buffered_frame % BUFFER_SIZE].size = bufferSize; ize); continue; SendFRAMEPacket((unsigned char*)(&buffer[i % BUFFER_SIZE]), buffer[i % BUFFER_SIZE].size); } return 0; } default : break; } return -1; } /* * 回退n帧测试函数 */ int stud_slide_window_back_n_frame(char *pBuffer, int bufferSize, UINT8 messageType) { Frame_head* p = (Frame_head*)pBuffer; unsigned int timeoutNum = *(unsigned int*)pBuffer; switch (messageType) { ead = *p; buffer[last_buffered_frame % BUFFER_SIZE].size = bufferSize; ++ last_buffered_frame; cout << "exp_ack : " << exp_ack << endl; if (ack >= exp_ack) { ++ expect_frame; if (next_frame < last_buffered_frame) { SendFRAMEPacket((unsigned char*)(&buffer[next_frame % BUFFER_SIZE]), buffer[next_frame % BUFFER_SIZE].size); ++ next_frame; } } else break; } return 0;

课程设计报告滑动窗口协议仿真精编

课程设计报告滑动窗口 协议仿真精编 Document number:WTT-LKK-GBB-08921-EIGG-22986

滁州学院 课程设计报告 课程名称:计算机网络 设计题目:滑动窗口协议仿真 系别:计算机与信息工程学院 专业:计算机科学与技术 组别:第五组 起止日期: 2011年11月24日~2011年12月7日指导教师:赵国柱 计算机与信息工程学院二○一一年制

课程设计任务书 一. 引言 二. 基本原理 窗口机制 1bit滑动窗口协议 后退N协议 选择重传协议 流量控制

三. 需求分析 课程设计题目 开发环境 运行环境 课程设计任务及要求 界面要求 网络接口要求 四. 详细设计 结构体的定义 发送方的主要函数 接受方的主要函数五. 源代码 发送方的主要代码 接收方的主要代码六. 调试与操作说明 致谢 [参考文献]

课程设计的主要内容 1.引言 早期的网络通信中,通信双方不会考虑网络的拥挤情况直接发送数据。由于大家不知道网络拥塞状况,一起发送数据,导致中间结点阻塞掉包,谁也发不了数据。在数据传输过程中,我们总是希望数据传输的更快一些,但如果发送方把数据发送的过快,接收方就可能来不及接收,这就造成数据的丢失。因此就有了滑动窗口机制来解决这些问题。早期我们使用的是1bit滑动窗口协议,一次只发送一个帧,等收到ack确认才发下一个帧,这样对信道的利用率太低了。因此提出了一种采用累积确认的连续ARQ 协议,接收方不必对收到的帧逐个发送ack确认,而是收到几个帧后,对按序到达的最后一个帧发送ack确认。同1bit滑动窗口协议相比,大大减少了ack数量,并消除了延迟ack对传输效率的影响。但是,这会产生一个新的问题,如果发送方发送了5个帧,而中间的第3个帧丢失了。这时接收方只能对前2个帧发出确认。发送方无法知道后面三个帧的下落,只好把后面的3个帧再重传一次,这就是回退N协议。为了解决这个问题,又提出了选择重传协议。当接收方发现某帧出错后,继续接受后面送来的

数据链路层滑动窗口协议的设计和实现样本

数据链路层滑动窗口协议的设计和实现样本数据链路层滑动窗口协议的设计和实现本文档所提供的信息仅供参考之用,不能作为科学依据,请勿模仿。 文档如有不当之处,请联系本人或网站删除。 数据链路层滑动窗口协议的设计与实现实验报告 一、实验任务及内容利用所学数据链路层原理,设计一个滑动窗口协议并在仿真环境下编程实现有噪音信道环境下的可靠的双工通信。 信道模型为8000bps全双工卫星信道,信道传播时延270毫秒,信道误码率为10--55,信道提供字节流传输服务,网络层分组长度在240~256字节范围。 (1)实现有噪音信道环境下的无差错传输。 (2)运行程序并检查在信道没有误码和存在误码两种情况下的信道利用率。 (3)提高滑动窗口协议信道利用率,根据信道实际情况合理地为协议配置工作参数,包括滑动窗口的大小和重传定时器时限以及ACK搭载定时器的时限。 实验环境Windows7环境PC,机,Microsoft VisualC++集成化开发环境 二、协议设计协议的分层结构及层服务::包括物理层,数据链路层和网络层三层。

该实验主要设计数据链路层协议,为实现有噪声环境下高信道利用率传输,我们采用回本文档所提供的信息仅供参考之用,不能作为科学依据,请勿模仿。 文档如有不当之处,请联系本人或网站删除。 退n n帧(go backn)技术的协议。 发送方窗口大小为31;通过捎带确认来完成可靠的数据通信;出现信道误码导致收帧出错时,接受方丢弃所有后续帧,待定时器超时后发送方重发。 该层提供服务::从网络层接受要发送的数据包,将之分拆成数据帧;按一定的成帧方案完成分帧,加校验码,加ack等操作;进行适当的流量判断和拥塞控制;启动定时器将之传递给物理层。 数据帧经信道传送给接受方,接受方数据链路层执行与成帧相逆的操作;处理ack信息,终止定时器(或启动ack定时器,ack成帧传送);判断是否为欲接受数据,数据是否出错,提交给网络层。 退回N N步工作原理示意图::本文档所提供的信息仅供参考之用,不能作为科学依据,请勿模仿。 文档如有不当之处,请联系本人或网站删除。 实验所形成帧((成帧方案))::DATA Framen+=========+========+========+===============+======== +|KIND (1)|ACK (1)|SEQ

TCP协议实验报告

学生实验报告 姓名:_________ 学号:____________ 班级:________________ 指导老师:_______________ 内容摘要 该实验报告了TCP协议分析实验相关分析; TCP协议分析是通过Wireshark分析TCP协议的报文格式,如理解TCP报文段首部各字段的含义,理解TCP建立连接的三次握手机制,了解TCP的确认机制,了解TCP的流量控制和拥塞控制 实验目的 1. 通过协议分析软件掌握TCP协议的报文格式; 2. 理解TCP报文段首部各字段的含义; 3. 理解TCP建立连接的三次握手机制; 4. 了解TCP的确认机制,了解TCP的流量控制和拥塞控制; 实验原理 连上in ternet的PC机,并且安装有协议分析软件Wireshark 实验原理及概况 TCP是因特网中最主要的运输层协议,它能够在两个应用程序章提供可靠的、有序的数据流传输,能够检测传输过程中分组是否丢失、失序和改变,并利用重传机制保证分组可 靠地传输到接收方; TCP首部格式如下图所示: 位U 3 16 24 31 首先是源端口和目的端口,服务器提供服务的端口号是固定的,比如:Web服务端口 号是80,而客户端的端口号是由操作系统随机分配一个用户端口号。TCP提供字节流服务, 它为分组中的每个字节编号,首部中的序号表示分组中第一个字节的编号。接收方用确认号 表示它期望接收的数据流中下一个字节编号,表明确认号之前的字节接收方都已经正确接收 了。数据偏移字段表示报文段的首部长度。标志部分包含6个标志位,ACK位表明确认号 字段是否有效;PUSH位表示发送端应用程序要求数据立即发送;SYN、FIN、RESET三位 用来建立连接和关闭连接;URG和紧急指针通常较少使用。接收端利用窗口字段通知发送 方它能够接收多大数据量。检验和字段是接收方用来检验接收的报文是否在传输过程中出

滑动窗口的仿真协议

计算机网络课程设计书 学 院 计算机与信息工程学院专业网络工程 课程名称计算机网络题目滑动窗口协议仿真完成期限自2015年6月23日至2015年6月29日共1周 内容及任务一、项目的目的 掌握滑动窗口协议的工作原理,并能够用所学计算机高级 语言进行编程模拟其运行过程;培养学生的动手实践和思考能力。 二,项目任务的主要内容和要求 (1)本次设计任务是根据滑动窗口协议的工作原理,在Visual C++ 6.0的平台上用C++语言编写一个基本TCP滑动窗口协议的模拟程序。 (2)要求该程序能够实现滑动窗口协议的发送和接收数据帧 功能,在此功能上体现滑动窗口协议的运作。 (3) 程序按照滑动窗口协议实现端对端的数据传送。包括协议的各种策略,如包丢失、停等应答、超时等都应有所仿真实现; (4) 显示数据传送过程中的各项具体数据。双方帧的个数变化,帧序号,发送和接受速度,暂停或重传提示等; 三、项目设计(研究)思路 (1) 查阅相关资料,理解滑动窗口协议的工作原理; (2) 设计滑动窗口协议实现端对端数据传送的功能流程图; (3) 编写代码实现滑动窗口协议工作的模拟程序,包括包丢失、停等应答、超时等; (4) 测试程序功能的实现情况。 四、具体成果形式和要求 (1)滑动窗口协议实现端对端数据传送的模拟程序。 (2)按照要求撰写课程设计报告并准备答辩。

进度安排 起止日期工作内容 2015.6.23-2015 .6.24 了解网络协议编程的基本知识; 2015.6.25-2015 .6.26 了解滑动窗口协议的工作机制; 2015.6.27-2015 .6.28 使用编程语言编写一个滑动窗口协议的模拟 程序,按要求实现程序。 2015.6.29最后汇总,调试,答辩 主要参考资料[1] 谢希仁. 计算机网络[M]. 4版. 北京:电子工业出版社, 2003. [2] 李仁发.何彦. 基于虚拟实验方法的滑动窗口协议分析[J]. 系统仿真学报. 2002. 8 (14) ; 1026 - 1063. [3] 李建中,张冬冬. 滑动窗口规模的动态调整算法[J]. 软件学报. 2004. 12 (15) : 1800 - 1814. [4] 王栩,李建中,王伟平. 基于滑动窗口的数据流压缩技术及连续查询处理方法[ J ]. 计算机研究与发展. 2004. 10 (41) : 1639- 1644. [5] 特南鲍姆. 计算机网络(第四版). 清华出版社 指导教师 意见 (签字):×年×月×日 系(教研 室)主任 意见 (签字):×年×月×日

计算机网络--滑动窗口实验报告

计算机网络滑动窗口协议实验报告 目录 一、实验内容和实验环境描述(2) 1.实验内容(2) 2.实验目的(2) 3.实验环境(2) 二、协议设计(3) 三、软件设计(4) Part A 选择重传协议 1.数据结构(4) 2.模块结构(6) 3.算法流程(7) Part B gobackn协议 1.数据结构(8) 2.模块结构(9) 3.算法流程(10) 四、实验结果分析(11) 五、探究问题(13) 六、实验总结与心得体会(14)

一、实验内容和实验环境描述 1.实验内容 利用所学数据链路层原理,自己设计一个滑动窗口协议,在仿真环境下编程实现有噪音信道环境下两站点之间无差错 双工通信。信道模型为8000bps全双工卫星信道,信道传播 时延270毫秒,信道误码率为10?5,信道提供字节流传输服 务,网络层分组长度固定为 256 字节。 2.实验目的 通过该实验,进一步巩固和深刻理解数据链路层误码检测的CRC校验技术,以及滑动窗口的工作机理。滑动窗口机制 的两个主要目的:(1)实现有噪音信道环境下的无差错传输; (2)充分利用传输信道的带宽。在程序能够稳定运行并成功 实现第一个目标之后,运行程序并检查在信道没有误码和存 在误码两种情况下的信道利用率。为实现第二个目标,提高 滑动窗口协议信道利用率,需要根据信道实际情况合理地为 协议配置工作参数,包括滑动窗口的大小和重传定时器时限 以及 ACK 搭载定时器的时限。 3.实验环境 Windows10环境PC机 Microsoft Visual Studio 2017集成开发环境

二、协议设计 本次试验主要设计数据链路层,实验中分别设计了gobackn协议与选择重传协议。主要涉及到的层次结构是物理层、数据链路层、网络层。 物理层:为数据链路层提供的服务为8000bps,270ms传播延时,10?5误码率的字节流传输通道。数据链路层利用接口函数send_frame()和 recv_frame()从物理层发送和接收一帧。 网络层:利用数据链路层提供的“可靠的分组传输”服务,在站点A与站点B之间交换长度固定为256 字节的数据分组。网络层把产生的分组交付数据链路层,并接受数据链路层提交来的数据分组。 数据链路层:通过 get_packet()函数从网络层得到一个分组,将之组装成帧,向物理层发送,启动计时器;进行适当的流量控制;数据帧经信道传送给接收方;接收方数据链路层终止定时器(或启动ack定时器),判断数据是否出错,若正确的话,是否为欲接受数据。若所受到的数据帧是期待接受的数据帧,则通过put_packet()函数将其缓冲区内缓存的数据依序提交给网络层。 可靠通信的实现:通过捎带确认来完成可靠的数据通信。 在选择重传协议中:1)出现信道误码导致收帧出错时,若未发送过该帧的NAK则接收方发NAK帧要求发送方重传;若已经发送过NAK,则等待定时器超时后发送方重发;2)当收到的帧位于接收窗口内,但不是接收窗口下边界的一帧时,将该帧进行缓存,

实验报告

学号14041102 14041107 14041101 TCP服务器与客户端设计 院(系)名称:信息工程学院 专业名称:网络工程 学生姓名:李博文陆禹均陈可 指导教师:潘莹 哈尔滨学院 2017年6月

一、设计目的: 1.理解客户端与服务器模型的工作原理。 2.掌握套接字的概念。 3.掌握TCP协议,基于TCP协议来设计此客户端/服务器程序。 4.通过设计面向连接的数据流传输服务程序,加深对面向连接的服务程序工作流程和 基本框架的理解。 二、设计内容 编写在java下的TCP服务器套接字程序,程序运行时服务器等待客户的连接,实现客户端与服务器的通信。 三、总体设计 本实验的设计是基于TCP/IP协议的程序时,传输层使用TCP协议,它的最大特点是在通信之前要在客户和服务器之间先建立连接,在数据传输完成后要关闭连接,释放网络资源。 对于TCP协议,主要有以下特点: (1)TCP是面向连接的运输层协议。应用程序在使用TCP协议之前,必须先建立TCP 连接。在传送数据完毕后,必须释放已经建立的TCP连接。 (2)TCP提供可靠交付的服务。通过TCP连接传送的数据,无差错、不丢失、不重复,并且按序到达。 (3)TCP提供全双工通信。TCP允许通信双方的应用进程在任何时候都能发送数据。TCP连接的两端都设有发送缓存和接受缓存,用来临时存放双向通信的数据。每一条TCP 连接只能有两个端点,每一条TCP连接只能是点对点的,即一对一的连接。

(4)面向字节流。TCP中的“流”指的是流入到进程或从进程流出的字节序列。 每一条TCP连接有两个端点,这个端点就是套接字(socket),端口号拼接到IP 地址即构成了套接字,每一条TCP连接唯一地被通信两端的两个端点,即两个套接字所确定。同一个IP地址可以有多个不同的TCP连接,而同一个端口号也可以出现在不同的TCP连接中。 TCP是面向连接的协议。运输连接是用来传送TCP报文的。TCP运输连接的建立和释放是每一次面向连接的通信中必不可少的进程。因此,运输连接就有三个阶段,即:连接建立、数据传送和连接释放。运输连接的管理就是使运输连接的建立和释放都能正常的进行。 在TCP连接建立过程中要解决一下三个问题: (1)要使每一方能够确知对方的存在。 (2)要允许双方协商一些参数(如最大窗口值、是否使用窗口扩大选项和时间戳选项及服务质量等)。 (3)能够对运输实体资源(如缓存大小、连接表中的项目等)进行分配。 TCP连接的建立采用客户服务器方式。主动发起连接建立的应用进程叫做客户,而被动等待连接建立的应用进程叫做服务器。 下图是TCP连接建立的过程。 客户A 服务器B CLOSED SYN- SENT ESTAB- LISHED CLOSED LISTEN SYN- RCVD ESTAB- LISHED 数据传送

窗口协议

ARQ与滑动窗口概念 滑动窗口协议,是TCP使用的一种流量控制方法。该协议允许发送方在停止并等待确认前可以连续发送多个分组。由于发送方不必每发一个分组就停下来等待确认,因此该协议可以加速数据的传输。 自动重传请求(Automatic Repeat-reQuest,ARQ)是OSI模型中数据链路层的错误纠正协议之一。它通过使用确认和超时这两个机制,在不可靠服务的基础上实现可靠的信息传输。如果发送方在发送后一段时间之内没有收到确认帧,它通常会重新发送。ARQ可能包括停止等待ARQ协议、回退ARQ和连续ARQ协议,错误检测(Error Detection)、正面确认(Positive Acknowledgment)、超时重传(Retransmission after Timeout)和负面确认及重传(Negative Acknowledgment and Retransmission)等机制。 他们的概念是差不多的只是作用于不同的网络层。数据链路层的滑动窗口是“个数固定”的。而TCP的滑动窗口是“个数可变”的,可以由接收端设置WIN字段来修改。 传统自动重传请求分成为三种,即停等式(stop-and-wait)ARQ,回退n帧(Go-back-n)ARQ,以及选择性重传(selective repeat)ARQ。后两种协议是滑动窗口技术与请求重发技术的结合,由于窗口尺寸开到足够大时,帧在线路上可以连续地流动,因此又称其为连续ARQ协议。三者的区别在于对于出错的数据报文的处理机制不同。三种ARQ协议中,复杂性递增,效率也递增。除了传统的ARQ,还有混合ARQ(Hybrid-ARQ)。 当发送窗口和接收窗口的大小都等于1时,就是停止等待协议。 当发送窗口大于1,接收窗口等于1时,就是回退N步协议。 当发送窗口和接收窗口的大小均大于1时,就是选择重发协议

相关主题