1 硅藻土的性能 1.1矿物简介分子式: SiO2 分子量: 60.08 硅藻土是一种硅质岩石,主要分布在中国、美国、丹麦、法国、苏联、罗马尼亚等国。
我国硅藻土储量3.2亿吨,远景储量达20多亿吨,主要集中在华东及东北地区,其中规模较大,工作做得较多的有吉林、浙江、云南、山东、四川等省,分布虽广,但优质土仅集中于吉林长白硅藻土矿区,资源优为丰富,其他矿床大多数为3~4级土,由于杂质含量高,不能直接深加工利用。
硅藻土由无定形的SiO2组成,并含有少量Fe2O3、CaO、MgO、Al2O3及有机杂质。
硅藻土通常呈浅黄色或浅灰色,质软,多孔而轻,工业上常用来作为保温材料、过滤材料、填料、研磨材料、水玻璃原料、脱色剂及硅藻土助滤剂,催化剂载体等。
显微镜下可观察到天然硅藻土的特殊多孔性构造,这种微孔结构是硅藻土具有特征理化性质的原因。
硅藻土作为载体的主要成分是SiO2。
例如工业钒催化剂的活性组分是V2O5,助催化剂为碱金属硫酸盐,载体为精制硅藻土。
实验表明,SiO2对活性组分起稳定作用,且随K2O或Na2O含量增加而加强。
催化剂的活性还与载体的分散度及孔结构有关。
硅藻土用酸处理后,氧化物杂质含量降低, SiO2含量增高,比表面积和孔容也增大,所以精制硅藻土的载体效果比天然硅藻土好。
硅藻土一般是由统称为硅藻的单细胞藻类死亡以后的硅酸盐遗骸形成的,其本质是含水的非晶质SiO2 。
硅藻在淡水和咸水中均可生存,种类很多,一般可分为“中心目”硅藻和“羽纹目”硅藻,每一目中,又有许多“属”,相当复杂。
天然硅藻土的主要成分是SiO2,优质者色白,SiO2含量常超过70%。
单体硅藻无色透明,硅藻土的颜色取决于粘土矿物及有机质等,不同矿源硅藻上的成分不同。
硅藻土,是被称之为硅藻的单细胞植物死亡后经过1至2万年左右的堆积期,形成的一种化石性的硅藻堆积土矿床。
硅藻是最早在地球上出现的原生生物之一,生存在海水或者湖水中。
正是这种硅藻,通过光合作用向地球提供氧,促进了人类和动植物的诞生。
这种硅藻土是由单细胞水生植物硅藻的遗骸沉积所形成,这种硅藻的独特性能于能吸收水中的游离硅形成其骨骸,当其生命结束后沉积,在一定的地质条件下形成硅藻土矿床。
它具有一些独特的性能,如:多孔性、较低的浓度、较大的比表面积、相对的不可压缩性及化学稳定性,在通过对原土的粉碎、分选、煅烧、气流分级、去杂等加工工序改变其粒度的分布状态及表面性质后,可适用于涂料油漆添加剂等多种工业要求。
1.2矿物成分硅藻土的主要矿物成分为蛋白石,并含有粘土(高岭石类、水分母类及少量胶岭石类)、炭质(有机质)、铁质(褐铁矿、赤铁矿、黄铁矿)、碳酸盐矿物(方解石、白云石、少量菱铁矿)、石英、白云母、海绿石、长石。
粘土矿物及炭质是硅藻土中主要伴生矿物。
粘土矿物呈显微鳞片状分布于硅藻粒四周,当粘土矿物含量为主要成分时,则起着胶结硅藻的作用。
炭质成质点状、块状或成层状与硅藻土共生,炭质均为变质程度很低的、仍保留植物结构的泥炭及褐煤。
1.3分类及命名硅藻土属硅质岩类岩石,硅质岩按成因分为两大类:生物或生物化学成因—硅藻土、板状硅藻土、蛋白土、放射虫岩、海绵岩。
非生物成因(化学、火山作用、次生成因)——碧玉岩、燧石岩、硅华、石英岩。
硅藻土中主要伴生矿物为粘土矿物、炭质(有机质),当这些矿物含量达50%以上则属粘土岩、炭质页岩,在命名时冠以硅藻X X岩。
当这些矿物含量小于50%,则属硅藻土,在命名时冠以X X硅藻土。
硅藻土 1.4矿物性质硅藻土是一种生物成因的硅质沉积岩,主要由古代硅藻遗体组成,其化学成份主要是SiO2,含有少量Al2O3、Fe2O3、CaO、MgO、K2O、Na2O、P2O5和有机质。
SiO2通常占80%以上,最高可达94%。
优质硅藻土的氧化铁含量一般为1~1.5%,氧化铝含量为3~6%。
硅藻土的矿物成份主要是蛋白石及其变种,其次是粘土矿物—水云母、高岭石和矿物碎屑。
矿物碎屑有石英、长石、黑云母及有机质等。
有机物含量从微量到30%以上。
硅藻土的颜色为白色、灰白色、灰色和浅灰褐色等,有细腻、松散、质轻、多孔、吸水性和渗透性强的物性。
硅藻土中的硅藻有许多不同的形状,如圆盘状、针状、筒状、羽状等。
松散密度为0.3~0.5g/cm3,莫氏硬度为1~1.5(硅藻骨骼微粒为4.5~5mm),孔隙率达80~90%,能吸收其本身重量1.5~4倍的水,是热、电、声的不良导体,熔点1650~1750°C,化学稳定性高,除溶于氢氟酸以外,不溶于任何强酸,但能溶于强碱溶液中。
硅藻土的氧化硅多数是非晶体,碱中可溶性硅酸含量为50~80%。
非晶型SiO2加热到800~1000°C时变为晶型,碱中可溶性硅酸可减少到20~30%。
1.5矿物特性硅藻土是一种具有生物结构的岩石。
主要由80~90%,有的达90%以上的硅藻壳组成。
海水、湖水中的氧化硅的主要消耗者就是硅藻,构成硅藻软泥。
在成岩过程中经石化阶段形成硅藻土。
硅藻壳由蛋白石组成,硅藻在生长繁衍过程中,吸取水中胶态二氧化硅,并逐步转变为蛋白石。
硅藻土中硅藻含量越多,杂质越少,则颜色越白,质越轻。
比重一般在0.4-0.9,由于硅藻体具有众多的壳体孔洞,使硅藻土具多孔质构造,硅藻土的孔隙度达90-92%,吸水性强烈,粘舌,由于硅藻颗粒细小,使硅藻土细腻、滑润。
硅藻土在酸中(HCl、H2S04、HN03)不溶解,但溶于HF和K0H。
2.1 不含有毒化学物质硅藻是最早在地球上出现的一种单细胞藻类,生存在海水或者湖水中,形体极为微小,一般只有几微米到十几微米。
硅藻能进行光合作用,自制有机物。
常常以惊人的速度生长繁殖。
它的遗骸沉积形成硅藻土。
正是这种硅藻,通过光合作用向地球提供氧,促进了人类和动植物的诞生。
硅藻土主要成分是硅酸质,表面有无数细孔,可吸附、分解空气中的异味,具有调湿、除臭功能。
采用硅藻土为原料生产出来的建材,不仅具有不燃、除湿、除臭和通透性好的特点,而且还能够净化空气、隔音、防水和隔热。
目前,这种新型建材优点多,成本并不高,因此被广泛使用在了各种装修工程之中。
上世纪80年代以来,日本住宅的室内装修使用了大量含有众多化学物质的装饰材料,引发了“室内装修污染综合症”,影响了一些人的身体健康。
为了减轻这种因住宅装修带来的负面影响,日本政府一方面修改了《建筑基准法》,严格限制散发有害化学物质的建筑材料在住宅室内使用,并严格规定了室内必须配备机械换气设备,实施强制性换气。
另一方面,积极鼓励和支持企业开发不含有害化学物质的新型室内装修装饰材料。
2.2 能调节室内湿度首先,可以自动调节室内湿度。
硅藻土的主要成分是硅酸质,用它生产的室内外涂料、壁材具有超纤维、多孔质等特性,其超微细孔比木炭还要多出5000到6000倍。
在室内的湿度上升时,硅藻土壁材上的超微细孔能够自动吸收空气中的水份,将其储存起来。
如果室内空气中的水份减少、湿度下降,硅藻土壁材就能够将储存在超微细孔中的水份释放出来。
其次,硅藻土壁材还具有消除异味的功能,保持室内清洁。
研究和实验结果表明,硅藻土能起到除臭剂的作用。
如果在硅藻土中添加氧化钛制成复合材料,能够长时间消除异味和吸收、分解有害化学物质,并能够长期保持室内墙面清洁,即使家中有吸烟者,墙壁也不会发黄。
第三,研究报告认为,硅藻土装修材料还能够吸收和分解引起人过敏的物质,产生医疗效果。
硅藻土壁材对水分的吸收和释放能够产生瀑布效果,将水分子分解成正负离子。
由于水分子被包裹,形成正负离子群,然后以水分子为载体,在空气中四处浮游,拥有杀菌能力。
在空气中到处浮游的正负离子群遇到了过敏物质以及其他细菌、霉菌等有害物质,就能立即将其进行包围和隔离。
然后,正负离子群中性能最活跃的氢氧根离子与这些有害物质进行剧烈的化学反应,最后将它们彻底分解成水分子等无害物。
硅藻土室内外涂料、装修材料还能够吸收和分解导致人过敏的物质,有医疗功能。
硅藻土壁材对水份的吸收和释放能够产生瀑布效果,将水分子分解成正负离子。
正负离子群在空气中四处浮游,有杀菌能力。
环保壁材硅藻土 3 硅藻土的应用 3.1 硅藻土的新用途硅藻土细腻、松散、质轻、多孔、吸着力和渗透性强、颗粒细小。
硅藻土的传统用途为如下几个方面:1.作为保温材料,硅藻土用于锅炉、蒸馏器、热处理炉、干燥器的保温材料以及轻质保温板、保温砖、保温管等;2.作为助滤剂,应用在啤酒、制药等行业中,是著名的啤酒助滤剂;3.作为功能性填料,加入添加颜料的薄膜中可以起到消光的作用;4.硅藻土也是化学工业催化剂载体,在制造硫酸中作钒催化剂,精炼石油中能加强石油的氢化作用;5.是建筑材料中的优选轻质材料,又是防水防渗的原料之一;6.高纯的硅藻土细粉加到银抛光粉中,可作汽车的抛光剂等。
随着科技的发展和人们对硅藻土从宏观到微观认识的逐渐深入,发现硅藻土壳壁上点纹、线纹和助纹都是整齐排列的小孔,线纹小孔的直径在 20~100nm,壳缝为 125nm 左右。
这样,硅藻土作为天然的有机孔材料受到了科技工作者的重视,以硅藻土为原料,在此基础上尝试开发其它的纳米材料方兴未艾。
另一方面,硅藻土壳壁主要由非晶质二氧化硅组成,以硅藻土为原料,还可以合成橡胶行业的重要补强剂——白炭黑。
硅藻土同其它非金属矿物一样,也可以进行有机或无机改性,使其制品性能更加优良。
近来,硅藻土在农业方面的应用也大有进展或者用于种子存贮,或者用于牲畜饲养,除虫杀虫,效果都颇明显。
3.2 微孔材料硅藻土的形体尺寸一般为几个微米到几十微米,最小只有 1μm,而其线纹小孔和壳缝均在纳米范畴,是天然的纳米材料。
利用其天然的微孔及纳米缝隙的特性,硅藻土被更多地用于制造微孔材料。
3.2.1 多孔道纳米沸石在硅藻土的沸石化制备多级孔道结构沸石材料的方法中,用层叠层和气固相转晶技术沸石化硅藻土制备多级孔道结构。
将纳米沸石作为吸附沉积液,硅藻土作为基质,在静电引力作用下用层叠层方法将纳米沸石组装到硅藻土上可以在不破坏硅藻土形貌结构的条件下将无定形的二氧化硅转化为沸石,所制得的产品由纳米沸石构成并且具有丰富的大孔,因此,能够提供很快的孔内扩散和高的活性位利用率,可用在制备催化剂、分离材料中,是有广泛应用前景的复合沸石材料。
3.2.2 微孔玻璃微孔玻璃是最近发展起来的功能性材料,微孔玻璃在生物、化工、医药工业中可用作载体、分离材料。
根据制法的不同,具有特殊的用途制造这种微孔玻璃最常使用的添加剂就是硅藻土,其原理也是利用了硅藻土纳米孔的特性。
用硅藻土为主要原料引进SiO2及少量Al2O3,并往其中添加其它一些原料配制 Na2O-CaO-Al2O3-SiO2 玻璃或CaO-Al2O3-B2O3-SiO2料,先作水热处理,然后熔制成玻璃。