导电高分子材料高分子材料自问世至今,已经有一百多年的历史。
1856年硝化纤维作为第一个塑料专利问世,20世纪60年代;许多性能优良的工程塑料相继投入工业化生产;20世纪80年代,材料科学已渗透各个领域,可以说已经进入高分子时代。
大多数高分子材料都是不导电的,因而高分子材料被广泛地作为绝缘材料使用。
1862年,英国Letheby在硫酸中电解苯胺而得到少量导电性物质;1954年,米兰工学院G.Natta用Et3Al-Ti(OBu)4为催化剂制得聚乙炔;1970年,科学家发现类金属的无机聚合物聚硫氰(SN)x具有超导性,有机高分子与无机高分子导电聚合物的开发研究合在一起开始了探寻之旅。
1974年日本筑波大学H.Shirakawa在合成聚乙炔的实验中,偶然地投入过量1000倍的催化剂,合成出令人兴奋的有铜色的顺式聚乙炔薄膜与银白色光泽的反式聚乙炔。
1980年,英国Durham大学的W.Feast得到更大密度的聚乙炔。
1983年,加州理工学院的H.Grubbs以烷基钛配合物为催化剂将环辛四烯转换了聚乙炔,其导电率达到35000S/m,但是难以加工且不稳定。
1987年,德国康采思巴斯夫公司BASF科学家N.Theophiou对聚乙炔合成方法进行了改良,得到的聚乙炔电导率与铜在同一数量级,达到107S/m。
导电高分子材料的研究和发展开始逐渐走向成熟,并且亟待着可以走向应用领域,导电高分子材料已经在功能高分子材料及导电体中占有重要的地位。
一.导电高分子的定义与导电机理导电高分子又称为导电聚合物,是由具有共轭π键的高分子经化学或电化学“掺杂”使其由绝缘体转变为导体的一类高分子材料。
导电高分子材料是一类兼具高分子特性及导电体特征的高分子材料。
按结构和制备方法不同,可将导电高分子材料(CPs)分为复合型与本征(结构)型两大类。
结构性导电高分子本身具有“固有”的导电性,由聚合物结构提供导电载流子(包括电子、离子或空穴)。
这类聚合物经掺杂后,电导率可大幅度提高,其中有些甚至可达到金属的导电水平。
复合型导电高分子是在本身不具备导电性的高分子材料中掺混入大量导电物质,如炭黑、金属粉、箔等,通过分散复合、层积复合、表面复合等方法构成的复合材料。
根据电荷载流子的种类,导电聚合物被分为电子导电聚合物和离子导电聚合物:以自由电子或空穴为载流子的导电聚合物称为电子导电聚合物,电子导电型聚合物的共同特征是分子内含有大的线性共轭π电子体系。
以正、负离子为载流子的导电聚合物被称为离子导电聚合物。
离子导电聚合物的分子具有亲水性、柔性好,允许体积较大的正、负离子在电场作用下在聚合物中迁移的特性。
1.本征型导电高分子材料的导电机理本征型导电高分子材料是由具有共轭π键的聚合物,经化学或电化学“掺杂”后形成导电,导电性显示强烈的各向异性,通过大分子π键电子云交叠形成导带,共轭分子键的方向就是导电方向。
从导电载流子的种类来看,又被分为电子型和离子型两类。
电子型导电高分子材料指的是以共轭π键大分子为主体的导电高分子材料,导电的载流子是电子(空穴)或孤子。
离子型导电高分子材料通常又叫高分子固体电解质,其导电时的载流子主要是离子。
所谓导电高聚物是π-共轭体系高聚物经化学或电化学掺杂,使其由绝缘体转变为导体的高聚物的统称。
聚合物的普遍结构式可为:p一型掺杂[(P+)1-y(A-1)y]nn一型掺杂[(P-)1-y(A+1)y]nP+和P-分别为带正电(p-型掺杂)和带负电(n一型掺杂)的高聚物链;A-和A+为一价对阴离子(p一型掺杂)和一价对阳离子(n一型掺杂); y为掺杂度,n为聚合度。
导电高聚物是由π-共轭高聚物链和一价对离子(counterions)构成,而且对阴离子和对阳离子与高聚物链无化学键合,仅是正负电荷平衡。
高分子聚合物导电必须具备两个条件:(1)要能产生足够数量的载流子(电子、空穴或离子、孤子等);(2)大分子链内和链间要能够形成载流子导体通道。
W.P.Su. J.R. Schrieffer和A.J.Heeger于1979年提出孤子理论。
根据这一理论,孤子、极化子和双极子化被视为导电高分子的导电载流子。
实验证实,“掺杂”是氧化还原过程,其实质是电荷转移;其次,导电高分子的“掺杂”量很大,可高达50%;再次,导电高分子有“脱掺杂”过程,而且“掺杂-脱掺杂”过程完全可逆。
“掺杂”所用方法包括化学方法、电化学方法以及无离子引入的暂态掺杂法。
但是无论在掺杂实质、掺杂量、掺杂后形成的载流子性质、掺杂/脱掺杂可逆等方面与无机半导体的“掺杂”概念有本质的差异。
1.1电子导电高分子材料的导电机理电子导电聚合物的载流子是电子和空穴,这些电子应具有离域或移动的能力,因此,作为导电高分子的必要条件是分子内部具有跨键离域移动能力的电子或空穴,其结构应有大的共轭体系。
在有机共轭分子中,σ键是定域键,构成分子骨架;而垂直于分子平面的p轨道组合成离域π键,所有π电子在整个分子骨架内运动。
离域π键的形成,增大了π电子活动范围,使体系能级降低、能级间隔变小,增加物质的导电性能。
交替的单键、双键共轭结构是导电高分子材料的共同特征。
以聚乙炔结构为例,在聚乙炔线性共轭电子体系的链状结构中,每一结构单元(CH)中的碳原子外层有4个电子,其中3个电子分别位于3个SP2杂化轨道,分别与一个氢原子和两个相邻的碳原子形成σ键。
剩余的一个P电子轨道与这3个σ轨道构成的平面互相垂直。
相邻碳原子的P轨道互相平行,电子云相互重叠构成共轭π键,因而具有导电能力。
但是,由于每个CH自由基结构单元P电子轨适中只有一个电子,分子轨道理论认为,一个分子轨道中只有填充两个自旋方向相反的电子才能处于稳定状态,那么对于每个P电子占据一个π轨道而构成的上述线性π电子共轭体系则处于非稳定态,它趋向于组成电子对并占据一个分子轨道,而另一个形成空轨道。
空轨道与占有轨道的能级不同,即P电子形成的能级分裂成两个亚带:全充满能带和空带,空带的能量高于满带的能量,这种能级差阻碍P电子无约束离域运动,因此,仅有线性π电子共轭结构的聚合物的导电性不如金属导体。
上图所示的聚乙炔由长链的碳分子以SP2键链接而成,每一个碳原子有一个价电子未配对,且在垂直于SP2面上形成未配对键。
其电子云互相接触,会使得未配对电子很容易沿着长链移动,实现导电能力。
半导体到导体的转化是通过掺杂(doping)来实现的。
在共轭有机分子中σ电子是无法沿主链移动的,而π电子虽较易移动,但也相当定域化,因此必需移去主链上部分电子(氧化)或注入数个电子(还原),这些空穴或额外电子可以在分子链上移动,使此高分子成为导电体。
导电高分子材料的掺杂途径包括:氧化掺杂(p-doping): [CH]n + 3x/2I2——>[CH]n x ++ x I3 –还原掺杂(n-doping): [CH]n+ xNa ——> [CH]n x -+ x Na+添补后的聚合物形成盐类,产生电流的原因并不是碘离子或钠离子而是共轭双键上的电子移动.碘分子从聚乙炔抽取一个电子形成,聚乙炔分子形成带正电荷的自由基阳离子,在外加电场作用下双键上的电子可以非常容易地移动,结果使双键可以成功地沿着分子移动,实现其导电能力。
1.2离子导电高分子材料的导电机理离子导电过程是在外加电场的作用下,由离子载流子的定向移动来实现的。
与电子导电过程相比,离子导电的载流子,其离子体积比电子要大得多,因此离子导电过程的离子体积是影响导电能力的主要因素之一。
作为离子导体必须具备两个条件:具有可定向移动的离子和具有溶剂化能力。
显然离子导体高分子材料也应具备上述两个基本条件,即材料中含有离子并允许离子在其中进行“扩散运动”;聚合物对离子有一定的“溶剂化”作用。
关于离子导电聚合物的导电方式目前较为一致的观点是属于非晶区非晶区传输过程。
当聚合物含有小分子离子时,在电场力的作用下,该离子可以在聚合物内作一定程度的定向扩散运动,因此具有导电性,表现出电解质的性质。
随着温度的升高,聚合物的流变性质愈突出,离子导电能力也得到提高。
当聚合物处于玻璃化转变温度以上时,聚合物本身仅呈粘弹性,而不是液体的流动性,离子如何在聚合物中作扩散运动?根据自由体积理论:在一定温度下聚合物分子以一定的振幅振动,其振动能量可以抗衡来自周围的静压力,在分子周围建立一个小的空间以满足分子振动的需要。
每个聚合物分子热振动形成的小空间称为自由体积(Vf),Vf与时间有关。
当振动能量足够大,Vf可能会超过离子本身体积(V);此时,聚合物中的离子可能发生位置互换而发生移动。
二.导电高分子材料的分类及制备方法按结构和制备方法不同将导电高分子材料分为复合型与结构型两大类。
2.1复合型导电高聚物及其制备方法复合型导电高聚物是以高分子材料为基体, 加入一定数量的导电物质( 如碳黑、石墨、碳纤维、金属粉、金属纤维、金属氧化物等) 组合而成。
该类聚合物兼有高分子材料的加工特性和金属的导电性。
与金属相比较, 导电性复合材料具有加工性好、工艺简单、耐腐蚀、电阻率可调范围大、价格低等优点。
复合型导电高分子所采用的复合方法主要有两种: 一种是将亲水性聚合物或结构型导电高分子与基体高分子进行共混, 另一种则是将各种导电填料填充到基体高分子中。
日本Asahi 公司将丙烯腈- 丁二烯- 苯乙烯嵌段共聚物( ABS) 、高抗冲改性聚苯乙烯( HIPS) 与亲水性PA 共混制得两种高性能抗静电复合材料AdionA和AdionH, 尤其是后者在相对湿度较低的条件下也表现出较强的抗静电能力, 且不受水洗和擦拭等影响。
在相对湿度为50% 、温度为23 e 的环境中保存4 年后抗静电性能无变化, 机械性能不低于普通HIPS, 其他性能则与普通HIPS 相同。
将结构型导电高分子材料与基体高分子在一定条件下共混成型, 可获得具有多相结构特征的复合型导电高分子。
它的导电性能由导电高分子的/ 渗流途径0 决定, 当导电高分子质量分数为2% ~ 3% 时, 其体积电阻率为107 ~ 109 8 #cm , 可作抗静电材料使用。
研究表明, 对于聚丙烯腈( PAN) / 聚氯乙烯( PVC)或PAN/ PA 共混物, 当PAN 质量分数由5% 增加到15%时, 导电性突升, 此后随PAN 质量分数的继续增加, 导电性升幅变小。
炭黑是天然的半导体材料, 其体积电阻率约为0. 1~ 10108#cm。
它不仅原料易得, 导电性能持久稳定, 而且可以大幅度调整复合材料的电阻率( 1~108 8#cm) 。
由炭黑填充制成的复合型导电高分子是目前用途最广、用量最大的一种导电高分子材料。
炭黑填充型导电高分子材料中炭黑通常以粒子形式均匀分散于基体高分子中, 随着炭黑填充量的增加, 粒子间距缩小, 当接近或呈接触状态时,便形成大量导电网络通道, 导电性能大大提高, 继续增加炭黑用量则对导电性影响不明显。