高考经典课时作业11-2 固体、液体和气体
(含标准答案及解析)
时间:45分钟分值:100分
1.在甲、乙、丙三种固体薄片上涂上石蜡,用烧热的针接触其上一点,石蜡熔化的范围如图(1)、(2)、(3)所示,而甲、乙、丙三种固体在熔化过程中温度随加热时间变化的关系如图(4)所示.下列判断正确的是()
A.甲、乙为非晶体,丙是晶体
B.甲、丙为晶体,乙是非晶体
C.甲、丙为非晶体,丙是晶体
D.甲为多晶体,乙为非晶体,丙为单晶体
2.(2011·高考福建卷)如图所示,曲线M、N分别表示晶体和非晶体在一定压强下的熔化过程,图中横轴表示时间t,纵轴表示温度T,从图中可以确定的是()
A.晶体和非晶体均存在固定的熔点T0
B.曲线M的bc段表示固液共存状态
C.曲线M的ab段、曲线N的ef段均表示固态
D.曲线M的cd段、曲线N的fg段均表示液态
3.某种气体在不同温度下的气体分子速率分布曲线如图所示,图中f(v)表示v处单位速率区间内的分子数百分率,所对应的温度分别为TⅠ,TⅡ,TⅢ,则()
A.TⅠ>TⅡ>TⅢ
B.TⅢ>TⅡ>TⅠ
C.TⅡ>TⅠ,TⅡ>TⅢ
D.TⅠ=TⅡ=TⅢ
4.(2013·南京模拟)一定质量的理想气体,经等温压缩,气体的压强增大,用分子动理论的观点分析,这是因为()
A.气体分子每次碰撞器壁的平均冲力增大
B.单位时间内单位面积器壁上受到气体分子碰撞的次数增多
C.气体分子的总数增加
D.气体分子的密度增大
5.如图所示,一定量的理想气体从状态a沿直线变化到状态b,在此过程中,其压强() A.逐渐增大
B.逐渐减小
C.始终不变
D.先增大后减小
6.对一定质量的气体,下列四种状态变化中,哪些是可能实现的()
A.增大压强时,温度降低,体积增大
B.升高温度时,压强减小,体积减小
C.降低温度时,压强增大,体积不变
D.降低温度时,压强减小,体积增大
7.如图所示,玻璃管内封闭了一段气体,气柱长度为l,管内外水银面高度差为h.若温度保持不变,把玻璃管稍向上提起一段距离,则()
A.h、l均变大
B.h、l均变小
C.h变大l变小
D.h变小l变大
8.(2012·高考福建卷)空气压缩机的储气罐中储有1.0 a tm的空气6.0 L,现再充入1.0 atm 的空气9.0 L.设充气过程为等温过程,空气可看作理想气体,则充气后储气罐中气体压强为()
A.2.5 atm B.2.0 atm
C.1.5 atm D.1.0 atm
9.一定质量的理想气体经历如图所示的一系列过程,ab、bc、cd和da这四段过程在p-T 图上都是直线段,ab和dc的延长线通过坐标原点O,bc垂直于ab,由图可以判断() A.ab过程中气体体积不断减小
B.bc过程中气体体积不断减小
C.cd过程中气体体积不断增大
D.da过程中气体体积不断增大
10.(2012·高考海南卷)如图,一汽缸水平固定在静止的小车上,一质量为m、面积为S的活塞将一定量的气体封闭在汽缸内,平衡时活塞与汽缸底相距L.现让小车以一较小的水平恒定加速度向右运动,稳定时发现活塞相对于汽缸移动了距离d.已知大气压强为p0,不计汽缸和活塞间的摩擦;且小车运动时,大气对活塞的压强仍可视为p0;整个过程温度保持不变.求小车加速度的大小.
11.内壁光滑的导热汽缸竖直浸放在盛有冰水混合物的水槽中,用不计质量的活塞封闭压强为1.0×105 Pa、体积为2.0×10-3 m3的理想气体,现在活塞上方缓慢倒上沙子,使封闭气体的体积变为原来的一半,然后将汽缸移出水槽,缓慢加热,使气体温度变为127 ℃.
(1)求汽缸中气体的最终体积;
(2)在如图所示的p-V图上画出整个过程中汽缸内气体的状态变化.(大气压强为1.0×105 Pa)
12.(2013·辽宁六校联考)一汽缸竖直放在水平地面上,缸体质量M=10 kg,活塞质量m=4 kg,活塞横截面积S=2×10-3 m2,活塞上面的汽缸内封闭了一定质量的理想气体,下面有气孔O与外界相通,大气压强p0=1.0×105Pa.活塞下面与劲度系数k=2×103N/m的轻弹簧相连.当汽缸内气体温度为127℃时弹簧为自然长度,此时缸内气柱长度L1=20 cm,g 取10 m/s2,活塞不漏气且与缸壁无摩擦.
(1)当缸内气柱长度L2=24 cm时,缸内气体温度为多少K?
(2)缸内气体温度上升到T0以上,气体将做等压膨胀,则T0为多少K?
标准答案及解析:
1.
解析:由图 (1)、(2)、(3)可知:甲、乙具有各向同性,丙具有各向异性;由图(4)可知;甲、丙有固定的熔点,乙无固定的熔点,所以甲、丙为晶体,乙是非晶体.其中甲为多晶体,丙为单晶体.
答案:BD 2.
解析:晶体与非晶体间关键区别在于晶体存在固定的熔点,固液共存态时吸热且温度不变,而非晶体没有固定熔点.B 正确.
答案:B
3.
解析:温度是气体分子平均动能的标志.由图象可以看出,大量分子的平均速率v -Ⅲ>v
-Ⅱ>v -Ⅰ,因为是同种气体,则E -k Ⅲ>E -k Ⅱ>E -
k Ⅰ,所以B 正确,A 、C 、D 错误. 答案:B
4.
解析:理想气体经等温压缩,压强增大,体积减小,分子密度增大,则单位时间内单位面积器壁上受到气体分子的碰撞次数增多,但气体分子每次碰撞器壁的冲力不变,故B 、D 正确,A 、C 错误.
答案:BD
5.
解析:在V -T 图象中,各点与坐标原点连线的斜率表示压强的大小.斜率越小,压强越大.
答案:A
6.
解析:温度降低时,分子的平均动能减少,使压强有减小的趋势;体积增大时,使压强也有减小的趋势.故A 的过程是不可能的.升高温度和减小体积,都会使压强增大,
故B 的过程是不可能的⎝⎛⎭
⎫也可由pV T =恒量来判断.对C 、D 由同样的方法来判断. 答案:D
7.
解析:开始时,玻璃管中的封闭气体的压强p 1=p 0-ρgh ,上提玻璃管,假设h 不变,l 变长,由玻意耳定律得,p 1l 1·S =p 2(l +Δl )·S ,所以气体内部压强小了,大气压p 0必然推着液柱上升,假设不成立,h 必然升高一些.最后稳定时,封闭气体的压强p 2=p 0-ρg (h +Δh )减小,再根据玻意耳定律,p 1l 1·S =p 2l 2·S ,l 2>l 1,l 变大,故A 对.
答案:A
8.
解析:取全部气体为研究对象,由p 1V 1+p 2V 2=pV 1得p =2.5 atm ,故A 正确. 答案:A
9.
解析:在p -T 图上,过原点的倾斜直线表示气体做等容变化,体积不变,故有V a =V b ,V c =V d ,而图线的斜率越大,气体的体积越小,故有V a =V b >V c =V d ,可判断B 、D 选项正确.
答案:BD
10.
解析:设小车加速度大小为a ,稳定时汽缸内气体的压强为p 1,活塞受到汽缸内外气体的压力分别为
f 1=p 1S ①
f 0=p 0S ②
由牛顿第二定律得
f 1-f 0=ma ③
小车静止时,在平衡情况下,汽缸内气体的压强应为p 0,由玻意耳定律得
p 1V 1=p 0V ④
式中V =SL ⑤
V 1=S (L -d )⑥
联立①②③④⑤⑥式得 a =p 0Sd m (L -d )
⑦ 答案:p 0Sd m (L -d )
11.
解析:(1)封闭气体的体积变为原来的一半且汽缸处于水槽中时,气体压强为p 1,在活塞上方倒沙子的全过程中温度保持不变,由玻意耳定律得p 0V 0=p 1V 1
解得p 1=V 0V 1
p 0 =2.0×10-3
1.0×10
-3×1.0×105 Pa =2.0×105 Pa
设最终体积为V 2,在缓慢加热到127℃的过程中压强保持不变,由盖-吕萨克定律V 1T 0
=V 2T 2
所以V 2=T 2T 0V 1=273+127273
×1.0×10-3 m 3 =1.47×10-3 m 3.
(2)如图所示
答案:(1)1.47×10-3 m 3 (2)见解析图
12.
解析:(1)V 1=L 1S ,V 2=L 2S ,T 1=400 K
p 1=p 0-mg S
=0.8×105 Pa p 2=p 0+F -mg S
=1.2×105 Pa 根据理想气体状态方程,得:p 1V 1T 1=p 2V 2T 2
解得T 2=720 K
(2)当气体压强增大到一定值时,汽缸对地压力为零,此后再升高气体温度,气体压强不变,气体做等压变化.设汽缸刚好对地没有压力时弹簧压缩长度为Δx ,则 k Δx =(m +M )g
Δx =7 cm
V 3=(Δx +L 1)S
p 3=p 0+Mg S =1.5×105 Pa
根据理想气体状态方程,得:p 1V 1T 1=p 3V 3T 0
解得T 0=1 012.5 K
升高气体温度,气体压强不变,气体做等压变化.设汽缸刚好对地没有压力时弹簧压缩长度为Δx ,则
k Δx =(m +M )g
Δx =7 cm
V 3=(Δx +L 1)S
p 3=p 0+Mg S
=1.5×105 Pa 根据理想气体状态方程,得:p 1V 1T 1=p 3V 3T 0
解得T 0=1 012.5 K
答案:(1)720 K (2)1 012.5 K。