当前位置:文档之家› 核酸化学

核酸化学

1 / 23 1.4.3 第三章 核酸化学 第三章 核酸化学

学习目标 知识目标 (1)阐述核酸的元素组成、组成成分及组成单位。 (2)描述DNA、mRNA、tRNA和rRNA的结构特点。 (3)阐述核酸的变性、复性、杂交等基本概念,并列举其应用。 (4)了解核酸的性质、体内重要的游离核苷酸及其衍生物的功能。 (5)概括核酸提取的有关原理和注意事项。 能力目标 (1)至少会用一种方法完成核酸的含量测定。 (2)具备核酸类药物在使用、储存和运输中的基本技能。 核酸是生物体的基本组成物质,是重要的生物大分子,从高等的动物、植物到简单的病毒都含有核酸。核酸是遗传信息的载体。

1869年,年轻的瑞士科学家Miescher从脓细胞核中分离出一种含有C、H、O、N和P的物质,当时称为核素。因发现核素显酸性,后又改称为核酸,意即来自细胞核的酸性物质。随后,Hoppe-Seyler从酵母中分离出一种类似的物质,即现在的RNA。自那之后,核酸研究并非非常顺利。直到1909年,美国生物化学家Owen发现核酸中的糖分子是由5个碳原子组成的核糖。1930年,他又发现Miescher在绷带上发现的核酸中的糖分子比2 / 23

Hoppe-Seyler发现的“酵母核酸”中的糖分子少了1个氧原子,因此将这种糖分子称为脱氧核糖,含两种不同糖分子的核酸分别称为脱氧核糖核酸(DNA)和核糖核酸(RNA)。1934年,Owen将核酸水解,证明核酸的基本组成单位是核苷酸。同时,在这一时期还证明了核苷酸是由碱基、戊糖和磷酸组成。20世纪50年代初,Chargaff发现DNA的嘌呤和嘧啶组成有其特殊规律。1953年,Watson和Crick提出了DNA的双螺旋结构模型。从此,核酸的研究经历了基因克隆、人类3×109个碱基对(base pair,bp)的基因测序,开始进入基因组学研究阶段。 1.4.3.1 第一节 核酸的化学组成 第一节 核酸的化学组成

一、核酸的元素组成 组成核酸的元素有C、H、O、N、P 5种,其中磷的含量在各种核酸中变化范围不大,平均含磷量为9%~10%。因而,可通过测定生物样品中磷的含量来计算样品中核酸含量。

二、核酸的基本组成单位——核苷酸 核酸在核酸酶的作用下水解为核苷酸,因此核酸的基本组成单位是核苷酸。为区别多、寡核苷酸,故将核苷酸也称为单核苷酸。核苷酸完全水解可释放出等摩尔量的碱基、戊糖和磷酸。

知识链接 核苷酸的利用 3 / 23

调味料:鸟苷酸(GMP)、肌苷酸(IMP)等核苷酸属于呈味性核苷酸,除了本身具有鲜味之外,在和左旋谷氨酸(味精)组合时,还有提高鲜味的作用,可作为调料、汤料的原料使用。

食品添加剂:母乳中含有尿苷酸(UMP)、胞苷酸(CMP)、腺苷酸(AMP)、鸟苷酸(GMP)、肌苷酸(IMP)等多种核苷酸,对提高婴儿的免疫调节功能和记忆力发挥着作用。在欧美等国家生产的婴儿奶粉均按照母乳中的含量添加微量核苷酸,也有添加RNA的例子。 药物:核苷酸作为药物,可抑制尿道发炎,在美国也有作为免疫调节剂给手术后的患者使用的例子。

(一)核苷酸的组成成分 1.碱基 核酸中的碱基主要有嘧啶碱(pyrimidine base)和嘌呤碱(purine base)两种。 (1)嘧啶碱:嘧啶碱是含有两个相间氮原子的六元杂环化合物。核酸中主要的嘧啶碱衍生物有三种:胞嘧啶(cytosine,C)、胸腺嘧啶(thymine,T)和尿嘧啶(uracil,U)。

(2)嘌呤碱:嘌呤碱由嘧啶环与咪唑环合并而成。核酸中的嘌呤碱主要有两种,即腺嘌呤(adenine,A)和鸟嘌呤(guanine,G)。 4 / 23

(3)稀有碱基:核酸中还有一些含量甚少的碱基,称为稀有碱基(或修饰碱基)。常见的稀有嘧啶碱基有5-甲基胞嘧啶、5,6-二氢尿嘧啶等;常见的稀有嘌呤碱基有7-甲基鸟嘌呤、N6-甲基腺嘌呤等。

知识链接 20世纪90年代,人类基因工程启动,科学家每天人工测序5000对碱基。21世纪初期,自动测序仪每天可以测序10万对碱基,而现在,每天可以测序250亿对碱基。但是,目前要分析人类所有的基因仍然需要至少几周的时间。

韩国KAIST的研究人员让一个DNA通过纳米通道,每个碱基就会附着在石墨纳米带状体上几微秒。通过改变石墨导电性能的方式分离四种碱基——腺嘌呤、胸腺嘧啶、胞嘧啶和鸟嘌呤。这样基因测序可以通过观察导电性变化,更快更准确地进行。预计可以在1h内分析30亿对碱基,这对于基因组测序研究而言具有重要的意义。

这项研究对于基因和生物工程领域研究意义重大,而且还能够为疑难杂症的治疗提供解决方案。这种方法还将推进基于基因信息的医疗、基因突变、遗传性疾病、个体和适应性疾病的发展,甚至推进人类进化研究的进程。

2.戊糖 核酸中所含的糖是核糖(D-ribose)和脱氧核糖(deoxy-D-ribose),均属于戊糖。戊糖都是以β-D-呋喃糖的环状形式存在。由于环状糖中的第1位碳原子(C1′)是5 / 23

不对称碳原子,所以有α-及β-两种构型。核酸中所含的戊糖均为β-型。核糖中的C2′—OH脱氧后形成脱氧核糖(2′-deoxy-D-ribose)。核糖上的碳原子序号上加“′”,是为了区别于碱基上的碳原子序号。

(二)核苷酸的分子结构 1.核苷 由一个戊糖(核糖或脱氧核糖)和一个碱基(嘌呤碱或嘧啶碱)缩合而成。 戊糖第1位碳原子(C1′)上的羟基与嘌呤碱第9位氮原子(N9)或嘧啶碱第1位氮原子(N1)上的氢缩合脱水形成糖苷键。核糖与碱基通过糖苷键连成核糖核苷,脱氧核糖与碱基通过糖苷键连成脱氧核糖核苷。

2.核苷酸 核苷酸由磷酸与一分子核苷通过磷酸酯键连成。 核苷中戊糖的羟基与磷酸作用形成磷酸酯键,核苷与磷酸通过磷酸酯键连接成的化合物即为核苷酸。核苷酸分为核糖核苷酸(nucleoside monophosphate,NMP)和脱氧核糖核6 / 23

苷酸(deoxynucleoside monophosphate,dNMP),分别由核糖核苷和脱氧核糖核苷与磷酸作用形成。体内通常由核糖核苷的戊糖C5′的自由羟基(—OH)与磷酸形成酯键,构成5′-核苷酸。

构成DNA和RNA的8种常见核苷酸的组成比较如表3-1所示。 表3-1 两类核酸的主要碱基、核苷及核苷酸组成

三、体内重要的游离核苷酸及其衍生物 1.多磷酸核苷酸 结合一个磷酸的核苷酸称为核苷一磷酸(NMP),因此,游离的5′-腺苷酸(AMP)和5′-脱氧腺苷酸(dAMP)分别称为腺苷一磷酸和脱氧腺苷一磷酸。结合两个和三个磷酸的,则分别称为核苷二磷酸(NDP)和脱氧核苷三磷酸(NTP),又统称为多磷酸核苷酸,结构如图3-1所示。 7 / 23

图3-1 AMP、ADP、ATP的结构示意图 核苷三磷酸(NTP和dNTP)是合成核酸(DNA和RNA)的直接原料。 2.体内重要的核苷酸衍生物 (1)环化核苷酸:细胞中普遍存在两种环化核苷酸:3′,5′-环腺苷酸(cAMP)和3′,5′-环鸟苷酸(cGMP),其结构如下:

环化核苷酸不是核酸的组成成分,在细胞中含量很少,但有重要的生理功能。现已证明,两者均可作为激素的第二信使,在细胞的代谢调节中有重要作用。

(2)辅酶类核苷酸:一些核苷酸的衍生物是重要的辅酶(辅基),如辅酶NAD+

(烟酰胺腺嘌呤二核苷酸,辅酶Ⅰ)、NADP+(烟酰胺腺嘌呤二核苷酸磷酸,辅酶Ⅱ)、FAD(黄素腺嘌呤二核苷酸)等。 1.4.3.2 第二节 核酸的结构与功能 第二节 核酸的结构与功能 8 / 23

核酸是生物体内重要的生物大分子化合物,参与遗传信息的储存、转录和表达。这些生物学功能都与其复杂的化学结构密切相关。

核酸是核苷酸的多聚化合物。一个核苷酸C3′上的羟基与另一个核苷酸C5′上的磷酸缩合脱水形成3′,5′-磷酸二酯键,多个核苷酸经3′,5′-磷酸二酯键构成一条没有分支的线性大分子,称为多聚核苷酸链,3′,5′-磷酸二酯键是核酸的主键。

由核糖核苷酸或脱氧核糖核苷酸通过3′,5′-磷酸二酯键相连组成的多聚核苷酸链是所有RNA或DNA的共同结构。这一连接方式决定了多聚核苷酸链具有方向性,每条多聚核苷酸链上具有两个不同末端,戊糖5′磷酸基指向的一端称为5′末端,戊糖3′羟基指向的一端称为3′末端。习惯上将5′端写在左边,将3′端写在右边,即按5′→3′书写。 5′……ACTACGGUA……3′ 一、DNA的结构

(一)DNA的一级结构 多数DNA分子是由两条多聚脱氧核苷酸链构成的双链分子,两条链中脱氧核苷酸可按一定的顺序通过磷酸二酯键相连而成,从而形成了每一种DNA分子特定的核苷酸序列。DNA分子的核苷酸排列顺序,称为DNA的一级结构。

DNA分子的序列特征代表其一级结构特征,同时记录有相应的遗传信息。分析DNA分子的一级结构对阐明DNA结构与功能的关系具有重要的意义。

(二)DNA的二级结构 9 / 23

1953年,Watson和Crick根据DNA的X线衍射分析数据和碱基分析数据,提出了DNA的双螺旋结构模型(图3-2),确定了DNA的二级结构形式,大大推动了生物学的发展。

图3-2 DNA的双螺旋结构的三种结构模型 知识链接 DNA分子双螺旋结构模型的诞生 20世纪50年代初,英国科学家威尔金斯(Wilkins)等用X线衍射技术对DNA结构研究了3年,意识到DNA是一种螺旋结构;另一方面,女物理学家富兰克林拍到一张十分清晰的DNA的X线衍射照片。1952年5月,威尔金斯向克里克(Crick)介绍了这张照片。当时克里克正与美国青年生物学家沃森(Watson)在卡文迪许实验室研究DNA结构。美国的查尔加夫(Chargaff)在脱氧核糖核酸的研究中,发现A(%)=T(%)、G(%)=C(%)的事实,克里克立即意识到,嘌呤碱和嘧啶碱的数目相等意味着只有一种可能,那就是他们之间互相以配对的形式存在,于是他提出了DNA中嘌呤碱与嘧啶碱的碱基配对的假设。1953年4月25日,克里克与沃森在《自然》杂志上发表了一篇短文,

相关主题