a n s y s单元类型在结构分析中,“结构”一般指结构分析的力学模型。
按几何特征和单元种类,结构可分为杆系结构、板壳结构和实体结构。
杆系结构:其杆件特征是一个方向的尺度远大于其它两个方向的尺度,例如长度远大于截面高度和宽度的梁。
单元类型有杆、梁和管单元(一般称为线单元)板壳结构:是一个方向的尺度远小于其它两个方向尺度的结构,如平板结构和壳结构。
单元为壳单元实体结构:则是指三个方向的尺度约为同量级的结构,例如挡土墙、堤坝、基础等。
单元为3D实体单元和2D实体单元杆系结构:①当构件15>L/h≥4时,采用考虑剪切变形的梁单元。
②当构件L/h≥15时, 采用不考虑剪切变形的梁单元。
③BEAM18X系列可不必考虑的上限,但在使用时必须达到一定程度的网格密度。
对于薄壁杆件结构,由于剪切变形影响很大,所以必须考虑剪切变形的影响。
板壳结构:当L/h<5~8时为厚板,应采用实体单元。
当5~8<L/h<80~100时为薄板,选2D体元或壳元当L/h>80~100时,采用薄膜单元。
对于壳类结构,一般R/h≥20为薄壳结构,可选择薄壳单元,否则选择中厚壳单元。
对于既非梁亦非板壳结构,可选择3D实体单元。
杆单元适用于模拟桁架、缆索、链杆、弹簧等构件。
该类单元只承受杆轴向的拉压,不承受弯矩,节点只有平动自由度。
不同的单元具有弹性、塑性、蠕变、膨胀、大转动、大挠度(也称大变形)、大应变(也称有限应变)、应力刚化(也称几何刚度、初始应力刚度等)等功能⑴杆单元均为均质直杆,面积和长度不能为零(LINK11无面积参数)。
仅承受杆端荷载,温度沿杆元长线性变化。
杆元中的应力相同,可考虑初应变。
⑵LINK10属非线性单元,需迭代求解。
LINK11可作用线荷载;仅有集中质量方式。
⑶LINK180无实常数型初应变,但可输入初应力文件,可考虑附加质量;大变形分析时,横截面面积可以是变化的,即可为轴向伸长的函数或刚性的。
⑷通常用LINK1和LINK8模拟桁架结构,如屋架、网架、网壳、桁架桥、桅杆、塔架等结构,以及吊桥的吊杆、拱桥的系杆等构件,必须注意线性静力分析时,结构不能是几何可变的,否则造成位移超限的提示错误。
LINK10可模拟绳索、地基弹簧、支座等,如斜拉桥的斜拉索、悬索、索网结构、缆风索、弹性地基、橡胶支座等。
LINK180除不具备双线性特性(LINK10)外,它均可应用于上述结构中,并且其可应用的非线性性质更加广泛,增加了粘弹塑性材料。
⑸LINK1、LINK8和LINK180单元还可用于普通钢筋和预应力钢筋的模拟,其初应变可作为施加预应力的方式之一。
梁单元分为多种单元,分别具有不同的特性,是一类轴向拉压、弯曲、扭转(3D)单元。
该类单元有常用的2D/3D弹性梁元、塑性梁元、渐变不对称梁元、3D薄壁梁元及有限应变梁元。
此类单元除BEAM189实为3节点外,其余均为2节点,但有些辅以另外的节点决定单元的方向(如表1-5中的节点数)。
单元使用另外应注意的问题:⑴梁单元面积和长度不能为零,且2D梁元必须位于XY平面内。
⑵剪切变形的影响:当梁的高度远小于跨度时可忽略剪切变形的影响。
经典梁元基于变形前后垂直于中面的截面变形后仍保持垂直的Kirchhoff假定,例如当剪切变形系数为零时的BEAM3或BEAM4。
但考虑剪切变形的梁弯曲理论中,仍假定原来垂直于中面的截面变形后仍保持平面,(但不一定垂直),ANSYS考虑剪切变形影响采用两种方法,即在经典梁元的基础上引入剪切变形系数(BEAM3/4/23/24/44/54)和Timoshenko梁元(BEAM188/189),前者的截面转角由挠度的一次导数导出,而后者则采用了挠度和截面转角各自独立插值,这是两者的根本区别。
⑶自由度释放:梁元中能够利用自由度释放的单元有BEAM44单元,通过keyopt(7)和keyopt(8)设定释放I节点和J 节点的各个自由度。
而高版本中的BEAM188/189也可通过ENDRELEASE命令对自由度进行释放,如将刚性节点设为球铰等。
⑷梁截面特性:能够采用梁截面特性的有BEAM44和BEAM188/189三个单元。
BEAM44截面不变时才能采用梁截面,在不使用梁截面而输入实常数时可以采用变截面。
BEAM188/189在V8.0以上版本中可使用变截面的梁截面,且可以采用不同材料组成的梁截面,而BEAM44则不可。
同时BEAM188/189支持约束扭转,通过激活第七个自由度使用。
⑸BEAM23/24实常数的输入比较复杂。
BEAM23可输入矩形截面、薄壁圆管、圆杆和一般截面的几何尺寸来定义截面。
BEAM24则通过一系列的矩形段来定义截面。
⑹荷载特性:梁单元大多支持单元跨间分布荷载、集中荷载和节点荷载。
但BEAM188/189不支持跨间集中荷载和跨间部分分布荷载。
特别注意的是梁单元的分布荷载是施加在单元上,而不是施加在几何线上。
⑺应力计算:对于输入实常数的梁元,其截面高度仅用于计算弯曲应力和热应力,并且假定其最外层纤维到中性轴的距离为梁高的一半。
因此关于水平轴不对称的截面,其应力计算是没有意义的。
2D实体单元是一类平面单元,可用于平面应力、平面应变和轴对称问题的分析,此类单元均位于XY平面内,且轴对称分析时Y轴为对称轴。
单元由不同的节点组成,但每个节点的自由度均为2个(谐结构实体单元除外),即Ux和Uy。
⑴ 单元插值函数及说明: PLANE2 是协调元。
PLANE42可为协调元或为非协调元,当退化时为常应变三角形单元。
PLANE82是PLANE42的高阶单元,采用3次插值函数。
PLANE182与PLANE42具有相同的插值函数,但无附加位移函数项;也可退化为3节点三角形。
PLANE183是PLANE182的高阶单元,与PLANE82的插值函数相同,也可退化为6节点三角形。
P单元的插值函数可为2~8次,其中PLANE145是8节点四边形单元,而PLANE146是6节点的三角形单元。
⑵荷载特性:大多支持单元边界的分布荷载及节点荷载,可考虑温度荷载,支持初应力文件等。
特别地对平面应力输入单元厚度时,施加的分布荷载不是线荷载(力/ 长度),而是面荷载(力/面积);如果不输入单元厚度,则为单位厚度。
⑶其它特点:四边形单元均可退化为三角形单元。
除P单元和谐结构单元不支持读入初应力外,其余均支持。
除4节点单元支持非协调选项外,其余都不支持。
除4节点单元外,其余单元都适合曲边模型或不规则模型。
3D实体单元用于模拟三维实体结构,此类单元每个节点均具有三个自由度,即Ux、Uy、Uz三个平动自由度单元使用应注意的问题:⑴关于SOLID72/73单元:SOLID72是4节点四面体实体元,SOLID73是8节点六面体实体元,这两个单元每个节点均具有6 个自由度,即Ux,Uy,Uz,Rotx,Roty,Rotz。
在较高版本中ANSYS已不再推荐使用,帮助文件中也不再介绍,但用命令流仍然可用。
原因之一是新的求解器PCG和SOLID92/95可以较好的解决原有的求解问题;之二是防止不同单元使用中“误用”转动自由度,例如与BEAM或SHELL混合建模时误用转动自由度。
⑵其它特点:除8节点单元具有非协调单元选项外,其余均不支持除8节点单元外,其余均适合曲边模型或不规则模型除10节点单元不能退化外,其余单元皆可退化为棱柱体和四面体单元,且SOLID95/186又可退化为金字塔(也称宝塔)单元。
⑶SOLID185积分方式可选择:完全积分的方法、减缩积分、增强应变模式和简化的增强应变模式。
且SOLID185/186/187单元均具有位移插值模式和混合插值模式(u-P插值),以模拟几乎不可压缩的弹塑材料和完全不可压缩的超弹材料。
壳单元可以模拟平板和曲壳一类结构。
壳元比梁元和实体元要复杂的多,因此壳类单元中各种单元的选项很多。
如节点与自由度、材料、特性、退化、协调与非协调、完全积分与减缩积分、面内刚度选择、剪切变形、节点偏置等,应详细了解各种单元的使用说明杆、梁单元→板壳单元→实体单元ANSYS中单元类型的选择2011-03-16 14:31转载自hrbeu2008最终编辑hrbeu2008初学ANSYS的人,通常会被ANSYS所提供的众多纷繁复杂的单元类型弄花了眼,如何选择正确的单元类型,也是新手学习时很头疼的问题。
单元类型的选择,跟你要解决的问题本身密切相关。
在选择单元类型前,首先你要对问题本身有非常明确的认识,然后,对于每一种单元类型,每个节点有多少个自由度,它包含哪些特性,能够在哪些条件下使用,在ANSYS的帮助文档中都有非常详细的描述,要结合自己的问题,对照帮助文档里面的单元描述来选择恰当的单元类型。
1.该选杆单元(Link)还是梁单元(Beam)?这个比较容易理解。
杆单元只能承受沿着杆件方向的拉力或者压力,杆单元不能承受弯矩,这是杆单元的基本特点。
梁单元则既可以承受拉,压,还可以承受弯矩。
如果你的结构中要承受弯矩,肯定不能选杆单元。
对于梁单元,常用的有beam3,beam4,beam188这三种,他们的区别在于:1)beam3是2D的梁单元,只能解决2维的问题。
2)beam4是3D的梁单元,可以解决3维的空间梁问题。
3)beam188是3D梁单元,可以根据需要自定义梁的截面形状。
2.对于薄壁结构,是选实体单元还是壳单元?对于薄壁结构,最好是选用shell单元,shell单元可以减少计算量,如果你非要用实体单元,也是可以的,但是这样计算量就大大增加了。
而且,如果选实体单元,薄壁结构承受弯矩的时候,如果在厚度方向的单元层数太少,有时候计算结果误差比较大,反而不如shell单元计算准确。
实际工程中常用的shell单元有shell63,shell93。
shell63是四节点的shell单元(可以退化为三角形),shell93是带中间节点的四边形shell单元(可以退化为三角形),shell93单元由于带有中间节点,计算精度比shell63更高,但是由于节点数目比shell63多,计算量会增大。
对于一般的问题,选用shell63就足够了。
除了shell63,shell93之外,还有很多其他的shell单元,譬如shell91,shell131,shell163等等,这些单元有的是用于多层铺层材料的,有的是用于结构显示动力学分析的,一般新手很少涉及到。
通常情况下,shell63单元就够用了。
3.实体单元的选择实体单元类型也比较多,实体单元也是实际工程中使用最多的单元类型。
常用的实体单元类型有solid45,solid92,solid185,solid187这几种。
其中把solid45,solid185可以归为第一类,他们都是六面体单元,都可以退化为四面体和棱柱体,单元的主要功能基本相同,(SOLID185还可以用于不可压缩超弹性材料)。