水库诱发地震活动的工程地质分析1 基本概念及研究意义⏹在一定条件下,人类的工程活动可以诱发地震,诸如修建水库,城市或油田的抽水或注水,矿山坑道的崩塌,以及人工爆破或地下核爆炸等都能引起当地出现异常的地震活动,这类地震活动统称为诱发地震。
其形成一方面依赖于该区的地质条件、地应力状态和有待释放的应变能积累程度等因素;另一方面也与工程行为是否改变了一定范围内应力场的平衡状态密切相关。
2 水库诱发地震活动性变化的几种典型情况2.1 蓄水后地震活动性增强⏹ 2.1.1 卡里巴—科列马斯塔型地震活动性的主要变化主要发生在1963年6月水库蓄水位超出正常高水位之后,尤以1963年8月库水位超出正常高水位2.9m之后为最强烈,此时水头增值仅为2%,以此作为地震活动性强烈变化的诱因是缺乏说服力的。
可是在正常高水位附近,水位波动几米库容变化却很大,显然库底岩石所承受的水库附加荷载以及附加荷载的影响深度都随之产生较大变化,水库底部承受附加应力超出一定值的岩石的体积也会产生很大变化。
2.1.2 科因纳—新丰江型科因纳水库诱发地震科因纳水库诱发地震之所以具有典型意义,就在于它是迄今为止最强的水库诱发地震(0.5级,地震序列中大于5.0级的达15次),而又是产生在构造迹象最不明显、岩层产状基本水平、近200 a 附近没有明显地层活动的印度地盾德干高原之上。
库、坝区均位于厚达1500m、产状水平、自古至始新世喷发的玄武岩层之上,由致密块状玄武岩与凝灰岩及气孔状玄武岩互层,凝灰岩中央有红色粘土,渗透性不良(图6—7)。
2.2 蓄水后地震活动性减弱3 水库诱发地震的共同特点从以上典型实例描述可知,水库诱发地震不同类型虽各有其特性,但概括起来它们却有很多共性。
这主要是这类地层的产生空间和地震活动随时间的变化与水库所在空间和水库水位或荷载随时间的变化密切相关,表示介质品质的地震序列有其固有特点和震源机制解得出的应力场与同一地区产生天然地震的应力场基本相同。
3.1地震活动与水库的空间联系3.1.1 震中密集于库坝附近通常主要是密集分布于水库边岸几km到十几km范围之内。
或是密集于水库最大水深处及其附近(卡里巴、科因纳),或是位于水库主体两侧的峡谷区(新丰江见图6—12,丹江口如图6—25)。
如库区及附近有断裂,则精确定位的震中往往沿断裂分布。
有的水库诱发地层初期距水库较远而随后逐渐向水库集中(丹江口、苏联的努列克)。
3.1.2 震源极浅、震源体小水库诱发地震主要发生在库水或水库荷载影响范围之内,所以震源深度很浅。
一般多在地表之下10km之内,以4—7km范围内为最多,且有初期浅随后逐步加深的趋势。
例如我国新丰江水库诱发地震1962年至1965年5月震源深度分布有如图6—26所示。
由于震源浅,所以面波强烈,震中烈度一般较天然地层高,零点几级就有感,3级就可以造成破坏。
3.2 诱发地震活动与库水位及水荷载随时间变化的相关性这种相关性已被广泛用以判别地震活动是否属水库诱发地震。
一般是水库蓄水几个月之后为微地震活动即有明显的增强,随后地震频度也随水位或库容而明显变化,但地震活动峰值在时间上均较水位或库容峰值有所滞后。
我国几个水库诱发地震蓄水开始与微震活动加强有如表6—3所示的关系。
3.3 水库诱发地震序列的特点既然水库诱发地震有水的活动和水库荷载参与,这一特点必然在地震序列中有所反映。
根据多个水库诱发地震序列的研究,它们的特点如下:(1)水库诱发地震以前震极丰富为特点,属于前震余震型(茂木2型),而相同地区的天然地震往往届主震余震型(茂木1型)(图6—27)。
以新丰江水库诱发地震为例,从蓄水到主震发生的39个月内,共记录到从>o.4的前震81719次。
(2)水库诱发地震余震活动以低速度衰减,例如我国新丰江水库诱发地震,1960年10月18日新丰江水库设立第一个地层台开始至1987年12月31日止,已记录到从>0.6级地震337461次,活动时间持续至今,整个活动期已30余年,科因纳水库地震活动迄今仍未停止。
(3)频度震级关系式中b值高和最大余震与主震震级比值高,主震震级不高,已有实例小于或等于6.5。
3.4 水库诱发地震的震源机制解根据所有研究过的水库诱发地震的震源机制服应指出以下值得注意的两点:(1)由震源机制解得出的应力场,与天然地震应力场或根据当地地质特征判定的应力场相同。
(2)水库诱发地震震源机制主要为走向滑动型和正断型两种,且前者多于后者。
属于逆冲型机制者极共少见,苏联努列克水库南侧的诱发地层为逆冲断层型的少数实例之。
4 水库诱发地震的诱发机制水库诱发地震的确切诱因现在尚未完全查明,但已有震例已经以充分资料证明,这类地震不是由于水库荷载直接造成的.而是水库的某种作用间接诱发的(indirectly induced)。
亦即水库的某种作用迭加于已有的天然应力场之上,使水库蓄水前由于自然作用积累起来的应变能较早地以地震的方式释放出来。
这方面的证据最主要的有以下两点:(1)根据水库诱发地震震源机制解得出的应力场与该区天然地震应力场或根据近期活动构造所得出的区域应力场完全一致.说明产生地震的应力场并非是由于水库荷载产生的,而是近期构造活动天然形成的。
(2)震源区由于水库荷载而产生的应力增量一般是很小的,单独不足以使岩体破坏或使岩体中已有断裂面的两侧产生相互错动。
4.2 水库蓄水对库底岩体的各种效应概括说来,水库蓄水以后对库底岩体可以产生以下三方面的效应。
6.4.1.1 水的物理化学效应这种效应使岩体断裂面及其充填物软化和泥化,从而降低了它的抗剪强度。
只有当水库蓄水前库底岩体是干的才会出现这种效应,而天然情况下河谷下的断裂面上一般是含水的.可见这类效应并非是经常部起作用的。
相应地降低了作用在裂隙面上的有效正应力,从而按下式降低抗剪强度τ=C十(σn一pw)tgψ (6-)式中:τ为抗简强度;c为内聚力;σn为正应力;pw为空隙水压力,ψ为内内摩擦角。
4.2 各种天然应力状态下的诱发机制既然水库蓄水仅能起诱发作用,那么要产生水库诱发地震必须是岩体之内预先存在着最大最小应力差相当大的天然应力场。
在水库的荷载效应和空隙水压力效应联合作用下使岩体内产生错动而诱发地震。
假定水库水体为无限延伸的,现在让我们分别讨论各种天然应力状态下诱发地震活动的情况。
天然地应力状态有潜在正断型、潜在走沿型和潜在逆冲型三种情况。
水库荷载应力的主要分量是垂直的(σv).与此同时在水平方向由于侧压力效应使水平应力亦有所增加,其增量为σH=(μ/(1- μ)) σv,如波松比μ取0.3,则σH=0.43σv。
显然,上述三种应力状态下荷载效应所造成的后果是不同的。
如图6-32所示,正断型时由于σv与垂直方向的最大主应力迭加,侧压力效应使水平的最小主应力增值仅为0.43 σv,莫尔园加大并稍向右移,结果是更接近于包络线,即稳定条件有所恶化。
潜在走向滑动型σv迭加于垂直的中间主应力之上,莫尔因大小没有变化,但水平的最大、最小主应力同时都增加了0.43σv,致使莫尔园右移,使稳定状况稍有改善。
潜在逆冲型则由于σv与垂向的最小主应力迭加,而水平的最大主应力的增量仅为0.43 σv,结果是莫尔园减小并右移,稳定状况大为改善。
总之荷载效应仅使潜在正断型的稳定状况有所恶化,而使走向滑动型与逆断型两者在不同程度上有所改善。
空隙水压力效应同时使最大最小主应力减小一个空隙水压力增值。
令其值近似等于γh(γ为水的容重,A为水库水深),则其值近似等于σv。
其结果是在三种应力状态下都使莫尔圆大为左移,亦即大大接近于包络线,即使震源岩体稳定性恶化。
上述两种效应迭加后,震源岩体稳定性最终变化如下:潜在正断型强烈恶化,走向滑动型因为荷载效应使莫尔圆离开包络线的距离小于空隙水压力效应使之接近包络线的距离,故最终结果是有所恶化。
潜在逆冲型的莫尔圆因荷载效应使之离开包络线的距离大致等于空隙水压力效应使之接近包络线的距离,但是荷载效应使改变了的莫尔圆小于原始莫尔圆,所以最终稳定程度稍有改善。
已有的地应力测定结果的75%属水平应力大于垂直应力的情况,这也就是绝大多数水库蓄水后地震活动性没有明显变化的原因。
甚至可以有天然应力状态下有地震活动.蓄水后地震活动反而减小的情况。
4.3 水库范围有限且水位变动时水库荷载效应及空隙水压力效应的变化根据土力学原理,有限延伸的水库所不同于无限延伸水库的是荷载造成的附加应力随远离加荷中轴而迅速减小。
图6—33图解表示了无限延伸水库(a)及有限延伸水库(b)的荷载应力及空隙水压力的不同。
无限延伸水库荷载应力无空间上的变化,表示荷载应力和空隙水压力的线都是水平的。
水位上升立即使荷载应力增高如图中L线所示。
由于空隙水压力的升高需要有一个渗入时间,所以水位升高后空防水压力是逐步升高.5 产生水库诱发地震的地质条件5.1 大地构造条件(1)板块俯冲、碰撞带届于潜在逆冲型的应力状态,产生诱发地震的可能性很小。
例如环太平洋地震带除美国西海岸一带及新西兰的一大部分外均属于板块俯冲带,在这带内水库诱发地层的震例极少。
(2)转换断层及大的平移断层,诸如美国加州圣安德烈期断层、新西兰阿尔卑斯断层、土耳其安纳托利亚断层等的附近地带,由于属潜在走向滑动型应力状态,有产生诱发地震的可能性。
(3)潜在正断型应力场产生水库诱发地震的可能性最大.但在大陆上属于此种应力状态者限于东非断裂谷型地堑带或其它大断陷盆地,典型震例为卡里巴。
5.2区域地质条件区域地质条件中能够用以判定诱发地震潜在可能性的,有近期构造活动迹象、地热流特征、介质品质及有利于空隙水压力活动的水文地质条件等方面。