网易新闻微博邮箱相册有道印像派梦幻人生更多博客首页风格圈子活动娱乐中心话题找朋友博客复制手机博客短信写博热点专题意见反馈更多>> 相册摄影展区搜索搜博文搜博客随便看看>>注册登录独上高楼愿我的博客成为我与你友谊的桥梁,你的快乐是我最大的愿望。
导航首页日志相册音乐收藏博友关于我日志笑书神侠我是一个爱交朋友、性格开朗的人,生活中纵然有很多的绊绊磕磕,但是我更喜欢自己和朋友过的快乐,希望有更多的人成为我的朋友。
加博友关注他最新日志预备党员转正申请书入团申请书范文商标注册申请书南非世界杯开幕式中国人首酒泉市中小学骨干教师、学科现代教师必备的素养博主推荐I miss you so much!图片上加放飘动的小图片点MM的眼镜教你制作一个播放器古代美女剪纸艺术欣赏春节主题素材馆相关日志首页推荐人体女模遭老汉赶在南非遭小学生打劫菲律宾鲜花也沙拉好吃老人堵公交抓小偷车震是这样制造的陆川;鄢颇被砍八卦无良更多>>随机阅读零分高考作文是伪造出来的富士康涨薪与高考独木桥没有模具照样做饼干-----口味超赞的香酥提子条饼干夷狄之辨:东亚及东南亚都是中国的版图自主招生为何走进死胡同剩饭的华丽变身——扬州炒饭初中语文教学案例之《老王》教学案例及反思 20种PS技术!三大尺规作图难题初中数学 2010-02-05 13:17:21 阅读48 评论0 字号:大中小三大几何难题古典难题的挑战——几何三大难题及其解决位于欧洲南部的希腊,是著名的欧洲古国,几何学的故乡。
这里的古人提出的三大几何难题,在科学史上留下了浓浓的一笔。
这延续了两千多年才得到解决的世界性难题,也许是提出三大难题的古希腊人所不曾预料到的。
一.三大难题的提出实际中存在着各种各样的几何形状,曲和直是最基本的图形特征。
相应地,人类最早会画的基本几何图形就是直线和圆。
画直线就得使用一个边缘平直的工具,画圆就得使用一端固定而另一端能旋转的工具,这就产生了直尺和圆规。
古希腊人说的直尺,指的是没有刻度的直尺。
他们在大量的画图经历中感觉到,似乎只用直尺、圆规这两种作图工具就能画出各种满足要求的几何图形,因而,古希腊人就规定,作图时只能有限次地使用直尺和圆规这两种工具来进行,并称之为尺规作图法。
漫长的作图实践,按尺规作图的要求,人们作出了大量符合给定条件的图形,即便一些较为复杂的作图问题,独具匠心地经过有限步骤也能作出来。
到了大约公元前6世纪到4世纪之间,古希腊人遇到了令他们百思不得其解的三个作图问题。
1.三等分角问题:将任一个给定的角三等分。
2.立方倍积问题:求作一个正方体的棱长,使这个正方体的体积是已知正方体体积的二倍。
3.化圆为方问题:求作一个正方形,使它的面积和已知圆的面积相等。
这就是著名的古代几何作图三大难题,它们在《几何原本》问世之前就提出了,随着几何知识的传播,后来便广泛留传于世。
二.貌以简单其实难从表面看来,这三个问题都很简单,它们的作图似乎该是可能的,因此,2000多年来从事几何三大难题的研究颇不乏人。
也提出过各种各样的解决办法,例如阿基米德、帕普斯等人都发现过三等分角的好方法,解决立方倍积问题的勃洛特方法等等。
可是,所有这些方法,不是不符合尺规作图法,便是近似解答,都不能算作问题的解决。
其间,数学家还把问题作种种转化,发现了许多与三大难题密切相关的一些问题,比如求等于圆周的线段、等分圆周、作圆内接正多边形等等。
可是谁也想不出解决问题的办法。
三大作图难题就这样绞尽了不少人的脑汁,无数人做了无数次的尝试,均无一人成功。
后来有人悟及正面的结果既然无望,便转而从反面去怀疑这三个问题是不是根本就不能由尺规作出?数学家开始考虑哪些图形是尺规作图法能作出来的,哪些不能?标准是什么?界限在哪里?可这依然是十分困难的问题。
三.高斯的发现历史的车轮转到了17世纪。
法国数学家笛卡尔创立解析几何,为判断尺规作图可能性提供了从代数上进行研究的手段,解决三大难题有了新的转机。
最先突破的是德国数学家高斯。
他于1777年4月30日出生于不伦瑞克一个贫苦的家庭。
他的祖父是农民,父亲是打短工的,母亲是泥瓦匠的女儿,都没受过学校教育。
由于家境贫寒,冬天傍晚,为节约燃料和灯油,父亲总是吃过晚饭就要孩子睡觉。
高斯爬上小阁楼偷偷点亮自制的芜菁小油灯,在微弱的灯光下读书。
他幼年的聪慧博得一位公爵的喜爱,15岁时被公爵送进卡罗琳学院,1795年又来到哥庭根大学学习。
由于高斯的勤奋,入学后第二年,他就按尺规作图法作出了正17边形。
紧接着高斯又证明了一个尺规作图的重大定理:如果一个奇素数P是费尔马数,那么正P边形就可以用尺规作图法作出,否则不能作出。
由此可以断定,正3边、5边、17边形都能作出,而正7边、11边、13边形等都不能作出。
高斯一生不仅在数学方面做出了许多杰出的成绩,而且在物理学、天文学等方面也有重要贡献。
他被人们赞誉为“数学王子”。
高斯死后,按照他的遗愿,人们在他的墓碑上刻上一个正17边形,以纪念他少年时代杰出的数学发现。
四.最后的胜利解析几何诞生之后,人们知道直线和圆,分别是一次方程和二次方程的轨迹。
而求直线与直线、直线与圆、圆与圆的交点问题,从代数上看来不过是解一次方程或二次方程组的问题,最后的解是可以从方程的系数(已知量)经过有限次的加、减、乘、除和开平方求得。
因此,一个几何量能否用直尺圆规作出的问题,等价于它能否由已知量经过加、减、乘、除、开方运算求得。
这样一来,在解析几何和高斯等人已有经验的基础上,人们对尺规作图可能性问题,有了更深入的认识,从而得出结论:尺规作图法所能作出的线段或者点,只能是经过有限次加、减、乘、除及开平方(指正数开平方,并且取正值)所能作出的线段或者点。
标准有了,下来该是大胆探索、细心论证。
谁能避过重重险滩将思维贯通起来,谁就是最后胜利者。
1837年,23岁的万芝尔以他的睿智和毅力实现了自己的梦想,证明了立方倍积与三等分任意角不可能用尺规作图法解决,宣布了2000多年来,人类征服几何三大难题取得了重大胜利。
他的证明方法是这样的:假设已知立方体的棱长为a,所求立方体的棱长为x,按立方倍积的要求应有x3=2a3的关系。
所以立方倍积实际是求作满足方程x3-2a3=0的线段X,但些方程无有理根,若令a=1,则要作长度为2的立方根的线段,但2的立方根超出了有理数加、减、乘、除、开方的运算范围,超出了尺规作图准则中所说的数量范围,所以它是不可能解的问题。
用类似地想法,他证明了三等分角也是不可能解的问题。
实际上万芝尔还证明了一个被称为高斯——万芝尔定理:如果边数N可以写成如下形式N=2t·P1·P2……Pn,其中P1、P2、…Pn都是各不相同的形如22k+1的素数,则可用尺规等分圆周N份,且只有当N可以表成这种形式时,才可用尺规等分圆周N份。
根据这一定理,任意角的三等分就不可能了。
1882年,德国数学家林德曼借助于eiπ=-1证明了π的超越性,从而解决了化圆为方的问题。
假设圆的半径为r,正方形的边长为x,按化圆为方数代数方程的根,更不能用加减乘除开平方所表示,因而不可能用尺规法作图。
从此,古典几何的三大难题都有了答案。
2000多年来,一代接一代地攻克三大难题,有人不禁要问这值得吗?假如实际中真遇到要三等分角、立方倍积、化圆为方,只要行之有效,何苦一定用尺规作图法解决?其实,数学研究并非一定要实用,数学家对每一个未知之谜都要弄个清楚,道个明白,这种执著追求的拗劲正是科学的精神。
更为重要的是,对三大难题的研究,反过来促进了数学的发展,出现了新的数学思想和方法,例如阿基米德、帕普斯发现的三等分角的方法,勃洛特用两块三角板解决立方倍积问题(这个我在上初中时曾经证明过,的确成立),等分圆周、作正多边形,高斯关于尺规作图标准的重大发现等等。
每一次突破不仅是人类智慧的胜利,使数学园地争奇竞艳,而且有利于科学技术的发展。
特别值得提到的是,在三大几何难题获得解决的同时,法国数学家伽罗瓦从一般角度对不可能性问题进行研究,在1830年,19岁的伽罗瓦提出了解决这一类问题的系统理论和方法,从而创立了群论。
群论是近世抽象代数的基础,它是许多实际问题的数学模型,应用极其广泛,而三大几何作图难题只不过是这种理论的推论、例题或习题。
所以,一般认为三大难题的解决归功于伽罗瓦理论,可伽罗瓦理论是在他死后14年才发表的,直到1870年,伽罗瓦理论才得到第一次全面清楚的介绍。
群和方程联系初等代数从最简单的一元一次方程开始,一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。
沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组,也叫线型方程组的同时还研究次数更高的一元方程组。
发展到这个阶段,就叫做高等代数。
高等代数是代数学发展到高级阶段的总称,它包括许多分支。
现在大学里开设的高等代数,一般包括两部分:线性代数初步、多项式代数。
高等代数在初等代数的基础上研究对象进一步的扩充,引进了许多新的概念以及与通常很不相同的量,比如最基本的有集合、向量和向量空间等。
这些量具有和数相类似的运算的特点,不过研究的方法和运算的方法都更加繁复。
集合是具有某种属性的事物的全体;向量是除了具有数值还同时具有方向的量;向量空间也叫线性空间,是由许多向量组成的并且符合某些特定运算的规则的集合。
向量空间中的运算对象已经不只是数,而是向量了,其运算性质也由很大的不同了。
高等代数发展简史代数学的历史告诉我们,在研究高次方程的求解问题上,许多数学家走过了一段颇不平坦的路途,付出了艰辛的劳动。
人们很早就已经知道了一元一次和一元二次方程的求解方法。
关于三次方程,我国在公元七世纪,也已经得到了一般的近似解法,这在唐朝数学家王孝通所编的《缉古算经》就有叙述。
到了十三世纪,宋代数学家秦九韶再他所著的《数书九章》这部书的“正负开方术”里,充分研究了数字高次方程的求正根法,也就是说,秦九韶那时候以得到了高次方程的一般解法。
在西方,直到十六世纪初的文艺复兴时期,才由有意大利的数学家发现一元三次方程解的公式——卡当公式。
在数学史上,相传这个公式是意大利数学家塔塔里亚首先得到的,后来被米兰地区的数学家卡尔达诺(1501~1576)骗到了这个三次方程的解的公式,并发表在自己的著作里。
所以现在人们还是叫这个公式为卡尔达诺公式(或称卡当公式),其实,它应该叫塔塔里亚公式。
三次方程被解出来后,一般的四次方程很快就被意大利的费拉里(1522~1560)解出。
这就很自然的促使数学家们继续努力寻求五次及五次以上的高次方程的解法。
遗憾的是这个问题虽然耗费了许多数学家的时间和精力,但一直持续了长达三个多世纪,都没有解决。
到了十九世纪初,挪威的一位青年数学家阿贝尔(1802~1829)证明了五次或五次以上的方程不可能有代数解。