当前位置:文档之家› 混频器设计

混频器设计


图9-5 混频 器频谱分布
四、双频三阶交调与线性度
1、混频器三阶交调系数 三阶交调系数 Mi 的定义为
13
骣 P ç三阶交调分量功率 ÷= 10 lg wm 3 M i (dB )= 10 lg ç ÷ ç 有用信号功率 ÷ Pif 桫
其值为负分贝数,单位常用 dBc,其物理含义是三阶交 调功率比有用中频信号功率 小的分贝数。三阶交调功率 Pwm 3 随输入微波信号功率 Ps 的变化斜率较大,而中频功 率 Pif 随 Ps 的变化呈正比关 系,基本规律是 Ps 每减小 1dB,Mi 就改善 2dB,如图 7、6 所示。
Pno F= Pns
(9-1)
式中 Pno——-当系统输入端噪声温度在所有频率上都是标准温 度T0 = 290K时,系统传输到输出端的总噪声资用功率; Pns——仅由有用信号输入所产生的那一部分输出的噪声资用功 率。 根据混频器具体用途不同,噪声系数有两种。
一、噪声系数和等效噪声温度比 3
1、单边带噪声系数 在混频器输出端的中频噪声功率主要包括三部分: (1)信号频率 fs 端口的信源热噪声是 kT0∆f,它 经过混频器变换成中频噪声由中频端口输出。这部分 输出噪声功率是
a r (dB )= 10 lg
(r s + 1)
4r s
2
+ 10 lg
(r i + 1)
4r i
2
(9-9)
混频器微波输入口驻波比ρs 一般为 2 以下。αρ的典型值约为 0.5~1dB。
二、变频损耗
2、混频二极管的管芯结损耗 管芯的结损耗主要由电阻 Rs 和电容 Cj 引起,参见图 9-2。在混频过程 中,只有加在非线性结电阻 Rj 上的信号功率才参与频率变换,而 Rs 和 Cj 对 Rj 的分压和旁路作用将使信号功率被消耗一部分。结损耗可表示为
8
骣 R ÷ ç a r (dB )= 10 lg ç1 + s + ws2C 2 Rs R j ÷ (dB) ÷ j ç R ÷ ç 桫 j
混频器工作时,Cj 和 Rj 值都随本振激励功率 Pp 大小而变化。Pp 很小时, Rj 很大,Cj 的分流损耗大;随着 Pp 加强,Rj 减小,Cj 的分流减小,但 Rs 的分压损耗要增长。因此将存在一个最佳激励功率。当调整本振功率,使 Rj = l/ωsCj 时,可以获得最低结损耗,即
二、变频损耗
3、混频器的非线性电导净变频损耗 净变频损耗αg取决于非线性器件中各 谐波能量的分配关系,严格的计算要 用计算机按多频多端口网络进行数值 分析;但从宏观来看,净变频损耗将 受混频二极管非线性特性、混频管电
9
图9-3 变频损耗、噪声 系数对本振功率的关系
路对各谐波端接情况,以及本振功率强度等影响。当混频管参 数及电路结构固定时,净变频损耗将随本振功率增加而降低, 如图9-3所示。本振功率过大时,由于混频管电流散弹噪声加大, 从而引起混频管噪声系数变坏。对于一般的肖特基势垒二极管, 正向电流为l~3mA时,噪声性能较好,变频损耗也不大。
微波混频器技术指标与特性分析 2
一、噪声系数和等效噪声温度比 噪声系数的基本定义已在第四章低噪声放大器中有过介绍。但 是混频器中存在多个频率,是多频率多端口网络。为适应多频 多端口网络噪声分析,噪声系数定义改为式(9-1),其理论基 础仍是式(6-1)的原始定义,但此处的表示方式不仅适用于单 频线性网络,也可适用于多频响应的外差电路系统,即
wm 3 = w p - (2ws 2 - ws1 )
三阶交调分量出现在输出中频附近的地方。当ωs1 和ωs2 相距很近时,ωm3 将落 入中频放大器工作额带内,造成很大干扰。这种情况在微波多路通信系统中是 一个严重问题,如果各话路副载波之间有交叉调制,将造成串话和干扰。上述 频谱关系如图 9-5 所示。图中∆ωif 是中频带宽。
a r min (dB )= 10 lg ( + 2ws C j Rs ) (dB) 1
可以看出,管芯结损耗随工作频率而增加,也随 Rs 和 Cj 而增加。 表示二极管损耗的另一个参数是截止频率 fc 为
图9-2 混频管 芯等效电路
fc =
1 2p Rs C j
通常,混频管的截止频率 fc 要足够高,希望达到 f c » ( ~ 20) f s 。比如 fc = 20fs 时,将有 10 αrmin = 0.4dB。 根据实际经验,硅混频二极管的结损耗最低点相应的本振功率大约为 1~2mW,砷化镓混频二极 管最小结损耗相应的本振功率约为 3~5mW。
第九讲 混频器设计
1
重要性:混频器是微波集成电路接收系统中必不可少的部件。不论是 重要性 微波通信、雷达、遥控、遥感、还是侦察与电子对抗,以及许多微波 测量系统,都必须把微波信号用混频器降到中低频来进行处理。 集成电路混频器是主流:主要是因为集成式混频器体积小,性能稳定 集成电路混频器是主流 可靠,设计技术成熟,而且结构灵活多样,可以适合各种特殊应用。 采用肖特基势垒二极管做变频元件:虽然二极管混频必不可免有变频 采用肖特基势垒二极管做变频元件 损耗,但是它结构简单,便于集成化,工作频带宽,可能达到几个甚 至几十个倍频程。它的噪声较低而且工作稳定,动态范围大,不容易 出现饱和。 电路结构形式:混频器有单管式混频,两管平衡式混频和多管式混频。 电路结构形式 单管混频只用一支二极管,结构简单,成本低,但噪声高,抑制干扰 能力差,在要求不高处可以采用;平衡式混频器借助于平衡电桥可使 本机振荡器的噪声抵消,因而噪声性能得到改善,电桥又使信号与本 振之间达到良好隔离,因此平衡混频器是最普遍采用的形式;还有多 二极管的混频器,比如管堆式双平衡混频器,镜频抑制混频器等是为 特殊要求而设计的,可用于多倍频程设备、镜频能量回收或自动抑制 镜频干扰等。
一、噪声系数和等效噪声温度比 6
2、双边带噪声系数 在商品混频器技术指标中常给出整机噪声系数,这是指包括中频放大 器噪声在内的总噪声系数。 由于各类用户的中频放大器噪声系数并不相同, 因此通常还注明该指标是在中频放大器噪声系数多大时所测得的。 #43; Fif - 1)
Pno = kT0D f / a m + kT0D f / a m + Pnd
一、噪声系数和等效噪声温度比 4
1、单边带噪声系数
Pno = kT0D f / a m + kT0D f / a m + Pnd
把 Pno 等效为混频器输出电阻在温度为 Tm 时产生的热噪声功率, Pno = kTm∆f, 即 Tm 称混频器等效噪声温度。kTm∆f 和理想电阻热噪声功率之比定义为混频器噪声温 度比,即
kTmD f = a m tm FSSB = kT0D f Lm
一、噪声系数和等效噪声温度比 5
2、双边带噪声系数 在遥感探测、射电天文等领域,接收信号是均匀谱辐射信号,存在于两个边带,这 种应用时的噪声系数称为双边带噪声系数。 此时上下两个边带都有噪声输入,因此 Pns = kT0∆f/αm。按定义可写出双边带噪声 系数
图9-1 混频器热 噪声谱
kT0D f am
式中 ∆f——中频放大器频带宽度;αm——混频器变频损耗;T0——环境温度, T0 = 293K。 (2)由于热噪声是均匀白色频谱,因此在镜频 fi 附近∆f 内的热噪声与本振频 率 fp 之差为中频,也将变换成中频噪声输出,如图 9-1 所示。这部分噪声功率也是 kT0∆f/αm。 (3)混频器内部损耗电阻热噪声以及混频器电流的散弹噪声,还有本机振荡 器所携带相位噪声都将变换成输出噪声。这部分噪声可用 Pnd 表示。 这三部分噪声功率在混频器输出端相互叠加构成混频器输出端总噪声功率 Pno
二、变频损耗
a m (dB )= 10 lg 微波输入信号功率 中频输入信号功率 = a b (dB )+ a r (dB )+ a g (dB )
7
混频器的变频损耗定义是: 混频器输入端的微波信号功率与输出端中频功 率之比,以分贝为单位时,表示式是 (9-8)
混频器的变频损耗由三部分组成:包括电路失配损耗αβ,混频二极管芯的结损 耗αr 和非线性电导净变频损耗αg。 1、失配损耗 失配损耗αρ取决于混频器微波输入和中频输出两个端口的匹配程度。 如果 微波输入端口的电压驻波比为ρs,中频输出端口的电压驻波比为ρi,则电路失 配损耗是
式中 Fif——中频放大器噪声系数;αm——混频器变频损耗;tm——混频 器等效噪声温度比。 tm 值主要由混频器性能决定,也和电路端接负载有关。tm 的范围大约 是 厘米波段 tm = 1.1~1.2 毫米波段 tm = 1.2~1.5 在厘米波段,由于 tm ≈ 1,所以可粗估整机噪声是
F0 = a m Fif
tm =
Pno T = m kT0D f T0
按照定义公式(9-1)规定,可得混频器单边带工作时的噪声系数为
FSSB =
Pno kTmD f = Pns Pns
在混频器技术手册中常用 FSSB 表示单边带噪声系数,其中 SSB 是 Singal Side Band 的缩写。Pns 是信号边带热噪声(随信号一起进入混频器)传到输出端的噪声 功率,它等于 kT0∆f/αm。因此可得单边带噪声系数是
Pmin = 10创 1.38 10- 23 创 300 (4创 1.258) (5 6 ) 10 = 1.03 - 12 W 10 ? 90 (dBm)
在不同应用环境中,动态范围下限是不一样的。比如在辐射计中由于采用了 调制技术,能接收远低于热噪声电平的弱信号。雷达脉冲信号则要高于热噪 声约 8dB,而调频系统中接收信号载噪比约需要 8~12dB。数字微波通信信号 取决于要求的误码率,一般情况下比特信噪比也要在 10~15dB 以上。
三、动态范围
10
动态范围是混频器正常工作时的微波输入功率范围。 (1)动态范围的下限通常指信号与基噪声电平相比拟时的功率。可用下 式表示
相关主题