当前位置:
文档之家› 计算机图形学 图形的表示与数据结构
计算机图形学 图形的表示与数据结构
立的、不相连接的多面体数,则扩展后的欧拉公式为:
V-E+F-H=2(C-G)。
25
基本概念——平面多面体与欧拉公式
8-12+6=2
5-8+5=2
6-12+8=2
24-36+15-3=2×(1-1)
图4.9 平面多面体与欧拉公式
26
4.2 三维形体的表示
线框模型与实体模型(线框模型由定义一个物体 边界的直线和曲线组成)
A
B
A
B
(a)A与B
C
C*
(b)
(c)集合运算 C=A∩B
(d) 正则集合运算 C*=A∩*B
图4.6 集合运算与正则集合运算
22
基本概念——正则集合运算
PA
PB
P
PA
PB
RA RB RA RB R
图4.7 基于点的领域概念生成正则形体
23
b· out A B A B A B A b· in BB A b· in A B b· out B A b· shared b· A B b· shared b· A B A
可以将实体模型的表示大致分为三类:
边界表示(用一组曲面(或平面)来描述物体, 这些曲面将物体分为内部和外部) 构造实体几何表示 空间分割(将包含物体的空间划分成一组非常 小的非重叠的连续实体)表示
27
三维形体的表示
多边形表面模型(使用一组包围物体内部的平面
多边形来描述实体)
扫描表示
10
基本概念——实体
图4.2 带有悬挂边的立方体
11
客观存在的三维形体的5条性质: 刚性:一个物体必须具有一定的形状 维数的一致性:三维空间种,一个物体的各部分均应 是三维的,不能有悬挂的或孤立边界 占据有限的空间(体积有限) 边界的确定性(根据物体的边界可以确定物体内部与 外部) 封闭性(经过一系列刚体运动及任意序列的集合运算 后,依然是有效的物体) 三维空间中的物体是一个内部连通的三维点集。
基本概念-实体(点集拓扑学的角度)
点的领域:如果P是点集S的一个元素,那么点P的以R(
R>0)为半径的领域指的是围绕点P的半径为R的小球(
二维情况下为小圆)。
开集的闭包:是指该开集与其所有边界点的集合并集,本
身是一个闭集。(三维物体的点的集合可以分为内部点和 边界点来那个部分) 正则集:由内部点构成的点集的闭包就是正则集,三维空 间的正则集就是正则形体。也就是三维有效物体
面-边包含性 f:{e}
e
图4.1 拓扑信息
基本概念——几何信息与拓扑信息
刚体运动:不改变图形上任意两点间的距离, 也不改变图形的几何性质的运动。 拓扑运动:允许形体作弹性运动,即在拓扑关 系中,对图形可随意地伸张扭曲。但图上各个 点仍为不同的点,决不允许把不同的点合并成
一个点。
9
基本概念——坐标系
的体素,然后,以体素的集合来表示图形对
象。
二维情况,常用二维数组存放。
三维情况下,常用三维数组p[i][j][k]来存
放。
40
八叉树
八叉树(octrees)又称为分层树结构,它对 空间进行自适应划分,采用具有层次结构的八 叉树来表示实体。
41
八叉树——四叉树
2)每条边至少是一个多边形的部分
3)每个多边形式封闭的 4)每个多边形至少有一条公共边 5)如果多边形表包含指向多边形边的指针,则每一个 被指针指向的边有一个逆指针指回到多边形
32
多边形表面模型
多边形网格:三维形体的边界通常用多边形网 格(polygon mesh)的拼接来模拟。(三角 形和四边形)
第四章 图形的表示与数据结构
如何在计算机中建立恰当的模型表示不同图形 对象。 如何组织图形对象的描述数据以使存储这些数 据所要的空间最省,检索、处理这些数据的速 度较快。
1
图形的表示与数据结构
基本概念 三维形体的表示 非规则对象的表示 层次建模
2
4.1 基本概念
造型技术
36
Y
Y
1 -1 0 -1
P1 1 2 3 4 X
1 0
P2 4 X
(a)
(b)
C U U U P1 T(平移) U P2 T P1 T △x=2 △y=2
Y
1 -1 0 -1
P1 1 2 3 4 X
T(平移) P1
P1 △x=4
P2
△y=2 -2
△x=2
(c) CSБайду номын сангаас树
(d) 由CSG树产生的形体
图4.14
由CSG树产生二维形体的实例
37
构造实体几何法
优点:如果体素设臵比较齐全,通过集合运算 就可以构造出多种不同的符合需要的实体。 缺点一:集合运算的中间结果难以用简单的代 数方程表示,求交困难。 缺点二:CSG树不能显式地表示形体的边界, 因而无法直接显示CSG树表示的形体。
38
基本图形元素
几何信息与拓扑信息
坐标系
实体的定义 正则集合运算 欧拉公式
3
基本概念——造型技术
把研究如何在计算机中建立恰当的模型表示不 同图形对象的技术称为造型技术。 有两类图形对象: 规则对象:几何造型、几何模型(几何信 息和拓扑信息)。 不规则对象:过程式模拟。
4
14
基本概念-实体
组成三维物体的点的集合可以分为两类: 内部点为点集中的这样一些点,它们具有完 全包含于该点集的充分小的领域。 边界点:不具备此性质的点集中的点。
15
基本概念——实体
定义点集的正则运算r运算为:
r A c i A
正则运算即为先对物体取内点再取闭包的运算。 r· A称为A的正则集。
C 边 顶点 B
AB
BC
CA
AD
BD
CD
A
B
C
D
图4.10 四面体及其点、边、面的关系
29
多边形表面模型——数据结构
几何信息(几何表)
建立3张表:顶点表、边表和多边形表来存
储几何数据。
实体模型中,用多边形顶点坐标值以及多边
形所在平面方程方式保存实体单个表面部分
的空间方向信息
30
多边形表面模型——数据结构
拓 扑 信 息 : 翼 边 结 构 表 示 ( Winged Edges
Structure)
E1
V1
E2
F1
F2
E
E3
V2
E4
图4.11 翼边结构表示
31
多边形表面模型——数据结构
属性信息
用属性表来存储多边形面的属性,指明物体透明 度及表面反射度的参数和纹理特征等等。
实体测试条件:1)每个顶点至少是两条边的端点
(a)二维流形
(b)二维流形
图4.5 正则形体
(c)非二维流形
19
基本概念——实体
实体:对于一个占据有限空间的正则形体,如
果其表面是二维流形,则该正则形体为实体。
20
基本概念——正则集合运算
有效实体的封闭性。
把能够产生正则形体的集合运算称为正则集合运 算。
21
基本概念——正则集合运算
例子
图4.12 三角形带与四边形网格
33
扫描表示(sweep representation)
扫描表示法(sweep representation)可以利用 简单的运动规则生成有效实体。 包含两个要素 一是作扫描运动的基本图形(截面); 二是扫描运动的方式(平移、旋转、对称变 换)。
34
构造实体几何法
构造实体几何法(CSG,Constructive Solid
Geometry)由两个实体间的并、交或差操作
生成新的实体。
A B (a)A,B形体的并
A B (b)A,B形体的差
A B (c)A,B形体的交
图4.13 构造实体几何法
35
构造实体几何法
在构造实体几何法中,集合运算的实现过程可 以用一棵二叉树(称为CSG树)来描述。 树的叶子是基本体素或是几何变换参数; 树的非终端结点是施加于其子结点的正则集 合算子(正则并、正则交和正则差)或几何 变换的定义。
基本概念——基本图形元素
基本图形元素:图素或图元、体素。 图素是指可以用一定的几何参数和属性参数描 述的最基本的图形输出元素(包括点、线、面 、环、体等)。 在二维图形系统中将基本图形元素称为图素或 图元,在三维图形系统中称为体素。
5
1、点:为0维几何元素,是形体最基本的元素,自由曲 线、曲面或其他形体均可用有序的点集来表示。点集及 其连接关系的存储。 2、线:一维几何元素,是两个邻面或多个邻面的交界 3、面:二维几何元素,是形体上一个有限、非零的区 域,由一个外环和若干内环界定其范围。具有方向性, 由其外法线矢量方向定义。 4、环:有序、有向边组成的面的封闭边界。(外环中 其边逆时针排序,内环顺时针排序) 5、体:三维几何元素,由封闭表面围成的空间。
基本概念——平面多面体与欧拉公式
欧拉公式证明简单多面体的顶点数V、边数E和面数F满
足如下关系:V-E+F=2。(简单多面体指那些经过连续的
几何形变可以变换成一个球的多面体,即与球拓扑等价 的那些多面体) 非简单多面体需对欧拉公式加以扩展。令H表示多面体表 面上孔的个数,G表示贯穿多面体的孔的个数,C表示独
三维物体表面必须具有以下5条性质:
连通性:位于物体表面上的任意两个点都可用实体表 面上的一条路径连接起来。
有界性:物体表面可将空间分为互不连通的两部分, 其中一部分是有界的 非自相交性:物体的表面不能自相交 可定向性:物体表面的两侧可明确定义出属于物体的 内侧或外侧 闭合性:物体表面的闭合性是由表面上多边形网格各 元素的拓扑关系决定的,即每一条边有且只有两个顶 点;每一条边连接来年各个或两个以上的面。