当前位置:文档之家› 矿井开拓设计

矿井开拓设计

矿井开拓设计一.矿井基本资料某矿井含有俩煤层,煤层厚度为m1=6m,m2=8m,煤间距10m,煤层倾角32。

煤层埋深煤露头72m,煤倾斜长度1860m,走向长度8000m。

设计生产能力180万t/a,采用3t底卸式矿车运输。

低瓦斯矿井,水文地质条件简单,顶底板均为中等稳定粉砂岩。

二.储量计算1.矿井地质资源量Z=8000*1860*(6+8)*1.25=260400000t2.矿井工业资源/储量根据钻孔布置,在煤矿地质资源量中,60%是探明的,30%是控制的,10%是推断的。

根据煤层厚度和煤质,在探明的和控制1的资源量中,70%的是经济的基础储量,30%的是边际经济的基础储量,则矿井工业资源/储量计算。

Zg= Z111b + Z122b + Z2m11+ Z2m22+ Z333kZg——矿井工业资源/储量Z111b——探明的资源量中经济的基础储量Z122b——控制的资源量中经济的基础储量Z2m11——探明的资源量中边际经济的基础储量Z2m22——控制的资源量中边际经济的基础储量Z333k——推断的资源量Z111b=26040*60%*70%=10936.8万tZ122b=26040*30%*70%=5468.4万tZ2m11=26040*60%*30%=4687.2万tZ2m22=26040*30%*30%=2343.6万t由于地质条件简单,k在0.8以上取值。

Z333k=26040*10%*k=2083.2万tZg=Z111b+Z122b+Z2m11+Z2m22+Z333k=10936.8 +5468.4+4687.2+2343.6+2083.2=25546.2万t。

3.矿井设计资源/储量矿井设计资源/储量计算,其中P1按矿井工业资源/储量的3%估算,Zs=(Zg-P1)Zs——矿井设计资源/储量P1——断层煤柱、防水煤柱、井田境界煤柱。

地面建筑物煤柱等永久煤柱损失量之和。

Zs=25546.2-25546.2*3%=24779.814万t4.矿井设计可采储量矿井设计可采储量按下式计算,其中P2按矿井设计资源/储量的2%估算。

Zk=(Zs-P2)CZk——矿井设计可采储量;P2——工业场地和主要井巷损失量之和;C——采区采出率,厚煤层不小于75%;中厚煤层不小于80%;薄煤层不小于85%。

Zk=(24779.814-24779.814*2%)*80%=19427.38万t。

三.矿井的设计生产能力和服务年限因为已知矿井的生产能力为180万t/a。

参照大型矿井服务年限的下限的要求,储量备用系数取1.4.T=Zk/AK=19427.38/180*1.4=77.09a在计算矿井服务年限时,考虑矿井投产后,可能由于地质损失增大、采出率低和矿井增产的原因,使矿井服务年限缩短,设置了备用储量Zb,备用量为:Zb=0.4*Zk/1.4=5550.68万t在备用储量中,估计约有50%为采出率过低和受未预知地质破坏影响所损失的储量。

矿井开拓设计时认定的实际采出的储量约为:19427.38-(5550.68*50%)=16652.04万t四.矿井开拓方式1 井筒布置由于井田地形平坦,不存在平硐开拓的条件根据煤层的赋存条件设计如下俩个方案方案一采用竖井开拓方式采用立井开拓,分别设主、副立井两个井筒。

井田垂高为 sin32*1860=985.7m煤层埋深露头为72m。

所以竖井高度为564.8m方案二采用斜井开拓方式斜井长度为 72/sin32=136m所以斜井长度约为1066m。

比较俩个方案竖井的建井时间长,开拓费用高,但是运输费用低。

斜井的开拓费用少,但是运输成本比较高。

且开拓长度较长,所以采用竖井开拓方式。

2 阶段的划分和开采水平的设置因为煤层的倾角较大,且倾斜长度较长。

故排除单水平开采。

根据《煤炭工业矿井设计规范》的规定当矿井划分为阶段开采时,其阶段垂高宜为: 1)缓倾斜、倾斜煤层200~350m; 2)急倾斜煤层 100~250m。

根据井田条件。

则本井田划分为二到三个阶段,二到三个水平。

阶段内采用采区式准备方式,每个阶段沿走向划分为4个走向长2000m的采区,采区内划分为若干个区段。

因煤层的角度过大,采用上下山开采技术上困难较多。

故采用上山开采。

这样,阶段划分和开采水平设置形成俩个方案,一是井田划分为俩个阶段,设置两个开采水平;二是井田划分为三个阶段,三个水平。

3.阶段和开采水平参数(1)水平垂高两阶段,两水平:(1860*sin32)/2=492.8m三阶段,三水平:(1860*sin32)/3=328.5m(2)开采水平实际出煤量两阶段,两水平方案:第一、第二阶段16652.04/2=8326.02三阶段,三水平方案:第一、第二、第三水平16652.04/3=5550.68(3)开采水平服务年限两阶段,两水平方案第一、第二阶段77.09/2=38.55a三阶段,三水平方案:第一、第二、第三水平77.09/3=25.7a(4)采区服务年限开采水平内每翼一个采区生产,矿井由俩个采区同采保证产量,考虑1a 的产量递增和递减期。

两阶段,两水平方案中的采区服务年限:(38.55/2)+1=20.27a三阶段,三水平方案中的采区服务年限:(25.7/2)+1=13.85a(5)区段数目及区段斜长两阶段,两水平方案:每个阶段划分5个区段,区段斜长为960/5=186m三阶段,三水平方案:每个阶段划分3个区段,区段斜长为620/3=206.7m (6)区段采出煤量两阶段,两水平方案:每个水平划分为4个采区,每个采区5个阶段,每个区段出煤量:8326.02 /4/5=416.301 万t三阶段,三水平方案:每个水平划分为4个采区,每个采区3个阶段,每个区段出煤量:5550.68/4/3=462.56万t综合考虑选择三阶段,三水平方案阶段和开采水平参数4.上山布置⑴采区采用集中岩石上山联合准备;⑵井田一翼的中央采区上山布置在距m2煤层底板30m以下的砂岩中,并在采后加以维护,留作下阶段的总回风通道及安全出口;5.大巷布置考虑到各煤层间距较小,宜采用集中大巷布置。

为减少煤柱损失和保证大巷维护条件,大巷布置于m2煤层底板下垂距为30m 的厚层粉砂岩内。

上阶段运输大巷留作下阶段回风大巷使用。

6.开拓延深方案两种延深方案:一是直接延深,二是暗斜井延深。

根据前述各项决定,在技术上可行的开拓方案有四种,如图所示方案1和方案2的区别在于第二水平是用暗斜井还是直接延深立井。

俩方案的生产系统都比较简单可靠。

俩方案对比,方案1需多开立井井筒(2x492.8m)、阶段石门(788.68m)和立井井底车场,并相应地增加了井筒和石门的运输、提升、排水费用。

第2方案则多开暗斜井井筒(倾角32°,2x998m)和暗斜井的上、下部车场;并相应地增加了斜井的提升和排水费用。

粗略估算结果如表对俩方案的基建费和生产费用粗略估算如下表,粗略估算后认为:方案1和方案2相差较大,所以从经济角度考虑方案2比较合适,所以决定选用方案2。

方案3和方案4的区别也仅在于第三水平是用立井直接延深还是采用暗斜井延深。

粗略估算结果如表,方案3的费用比方案4总体较高,所以采用方案4。

方案的总体比较对方案2和方案4有差别的建井工程量、生产经营工程量、基建费和生产经营费分别计算,计算结果如表。

开拓方案2和方案4的建井工程量开拓方案2和4的生产经营工程量开拓方案2和4的费用汇总项目方案2 方案4费用/ 万元百分率/% 费用/万元百分率/%初期建井费基建工程费(初期+后期)生产经营费493.22328.823076.95100%110%113%627.72116.020472.64128%100%100%总费用25898.95 111% 23215.84 100%在上述经济比较中需要说明的是:1、两方案的个采区均布置俩条采区上山,且这些上山的开掘单价近似相等,考虑到全井田内采区上山的总开掘长度相同,即两方案的采区总上山开掘费用近似相同,故未对此计算,采区上部、中部、和下部车场的数目在俩方案中虽略有差别,但基建费用的差别较小,故也未予以计算。

2、在初期投资中,方案4可少掘运上山和轨道上山,在比较中未列入。

3、立井、大巷、石门及采区上山的辅助运输费用均按运输费用的20%估算。

4、井筒、井底车场、主石门、阶段大巷及总回风巷均布置在坚硬的岩层中,维护费用低于5元,故此未比较其维护费用的差别。

5、采区上部、中部和下部车场的维护费用均按采区上山维护费用的20%估算。

采区上山的维护单价按受采动影响与未受采动影响的平均维护单价进行计算。

由对比结果可知,方案2比方案4的费用高出11%。

六.开拓方案的综合比较从前述技术经济比较结果来看:虽然方案4的初期建井费用比方案2要高28%,但基建工程费用则明显低于方案2,低10%。

由于基建费用的计算误差比一般生产经营费的计算误差小得多,所以可认为方案4相对较优。

从建井工期来看方案4的建井时间较长。

但从生产费用比较则方案4较优。

综合比较方案4在整体上比方案2的费用较为节省。

且在两方面比方案2的费用低。

所以采用方案4的。

即矿井采用立井开拓。

暗斜井延深三水平开拓。

采用上山开采。

七.井底车场的布置1、设计要求(1)井底车场富裕通过能力,应大于矿井设计生产能力的30%。

(2)井底车场设计时,应考虑增产的可能性。

(3)尽可能地提高井底车场的机械化水平,简化调车作业,提高井底车场通过能力。

(4)在开拓方案设计阶段,应考虑井底车场的合理形式,特别要注意井筒之间的合理布置避免井筒间距过小而使井筒和巷道难于维护、地面绞车房布置困难。

(5)应考虑主、副井之间施工时便于贯通。

6)在初步设计时,井底车场需考虑线路纵断面闭合,以免施工图设计时坡度补偿困难。

(7)在确定井筒位置和水平标高时,要注意井底车场巷道和硐室所处的围岩情况及岩层的含水情况,井底车场巷道和硐室应选择在稳定坚硬的岩层中,应避开较大断层、强含水层、松软岩层和有煤与瓦斯突出煤层。

(8)井底车场长度较大的直线巷道之间应保持一定的距离,避免相互之间的不利影响,深井中相连接的巷道必须具有不小于45°的交角。

(9)对于大型矿井或高瓦斯矿井在确定井底车场型式时,应尽量减少交岔点的数量和减小跨度。

(10)井底车场线路布置应结构简单,运行及操作系统安全可靠,管理使用方便理并注意节省工程量,便于施工和维护。

(11)井筒与大巷距离近、入井风量大的矿井,如有条件应尽量与大巷合在一起布置井底车场,以便缩短运距、减少调车时间、减少井巷工程。

(12)为了保护井底车场的巷道和硐室,在其所在处范围内应留有煤柱。

2、设计设计依据(1)矿井没计能力180万t/a(2)立井开拓,井筒的相互位置如图,两翼大巷来煤量基本相等。

相关主题