钢管混凝土泵送顶升混凝土施工工艺引言:钢管混凝土的灌注通常采用泵送顶升压注法,利用混凝土输送泵的压力,在拱脚开压注口,在拱顶开出浆孔,将混凝土沿钢管从下往上一次压注完成,保证混凝土的连续均匀与密实。
一、工程概况某钢管混凝土系杆拱桥,主跨采用φ426×20㎜钢管共439.892m,φ426×12㎜钢管共1245.464m,共压注混凝土210m3;φ203×10㎜钢管共813.844m,水平布置的φ203钢管共369.078m,灌注微膨胀水泥浆共9.1m3,竖向布置的φ203钢管共444.766m不压浆。
水平φ203钢管单根最长8.7m,需压浆0.25m3,最短3m,需压浆0.1m3。
二、工艺原理钢管混凝土的灌注采用泵送顶升压注法,利用混凝土输送泵的压力,在拱脚开压注口,在拱顶开出浆孔,将混凝土沿钢管从下往上一次压注完成,保证混凝土的连续和均匀。
钢管内灌注C45微膨胀混凝土,混凝土要求具有良好的泵送性能和微膨胀性,能够抵消混凝土收缩。
充分利用各种外加剂的特性来改善混凝土的性能,以提高混凝土强度、和易性和可泵性来补偿钢管混凝土干缩、温缩。
三、施工方法1、配合比设计由于钢管内有法兰致使钢管内径从402㎜突变为183㎜,混凝土泵送高度高达41m、距离长达100m,这些因素造成混凝土泵送阻力很大,因此钢管混凝土泵送施工难度大,对混凝土的技术性能提出了更高的要求。
配合比设计应遵循以下指标:(1)混凝土设计强度:C45;(2)混凝土具有良好的可泵性,即坍落度大,和易性好、不泌水、不离析、自密性好;(3)混凝土具有补偿收缩性,并满足下表要求:项目限制膨胀率(%)限制干缩率(%)抗压强度(Mpa)28d 龄期水中14d 水中14d,空气中28d≥1.5×10-2 ≤3.0×10-2 ≥54.9性能指标(4)初凝时间必须满足每孔管道的压注完毕后,混凝土仍具有足够的和易性,本次配合比设计要求初凝时间大于13小时,终凝时间大于16小时。
坍落度控制在20㎝~22㎝,扩展度大于55㎝,压力泌水率S10<15ml、S140=40~100ml;(5)胶凝材料最少用量(水泥、膨胀剂和掺合料的总量)大于300kg/m3。
配合比设计由W4标中心实验室完成,并委托葛洲坝试验中心对重要指标进行复检。
使用原材料如下,各材料用量根据实验室配合比报告执行。
(1)水泥:华新"堡垒"牌P.O 42.5.(不得使用硫铝酸盐水泥、铁铝酸盐水泥和高铝水泥;(2)细骨料:洞庭湖中砂;(3)粗骨料:三岔口反击破碎石(5~20mm);(4)粉煤灰:武汉华壁Ⅰ级粉煤灰(掺量18~22%);(5)武汉三源EVA膨胀剂(掺量10~14%);(6)山东淄博华伟NOF-AS高效减水剂(掺量1.3~1.5%)。
2、补偿收缩混凝土限制膨胀率的计算及确定:补偿收缩混凝土性能指标的确定,一是在不影响抗压强度的条件下膨胀率尽量增大,二是干缩落差要小。
混凝土外加剂应用技术规范GB50119-2003中规定补偿收缩混凝土的膨胀性能,以限制条件下的膨胀率和干缩率表示。
因为混凝土收缩受到限制才会产生裂纹,而混凝土膨胀在限制条件下才能产生预压应力。
计算公式为:ζc=μ×Es×ε2注:a.(μ——配筋率,Es——钢筋弹性模量,ε2——限制膨胀率);b. 膨胀试件尺寸为100mm×100mm×300mm,中间预埋两端带钢板的Φ10mm钢筋,配筋率μ=0.007854,钢筋的弹性模量取Es≈2×105Mpa;c.ζc=0.007854×10-2×2×105×ε2=1.57ε21=1.57×103×ε2(Mpa)根据GB50119-2003中规定掺膨胀剂的补偿收缩混凝土水中养护14d的限制膨胀率≥0.015%,相当于在结构中建立的预压应力大于0.2Mpa;d.补偿收缩混凝土的限制膨胀率最好控制在0.02%~0.03%即预压应力为0.24~0.47Mpa。
3、混凝土的运输方案及混凝土泵的选择a.混凝土的运输方案方案1:桥台顶至拱座顶的落差为42m,水平距离约为40m,若在桥台附近布置一台混凝土泵向下泵送混凝土,在拱座顶再布置一台混凝土泵接力,则倾斜向下配管长度约为60m,根据《混凝土泵送施工技术规程JGJ/T10-95》的要求,应在斜管下端设5倍高差长度的水平管,由于现场地形狭窄,即使设置弯管或环形管也很难实现,所以采用两台混凝土泵接力输送混凝土的方案不现实,应予以否定。
方案2:根据拱座基础灌注经验,我们仍可采用串筒输送混凝土至拱座顶。
由于自溜距离较长,混凝土到达拱座时部分离析,和易性差。
因此我们可以在拱座顶放置一台混凝土泵,泵上方设置一个容量为2m3、带搅拌装置的贮料斗用于将溜槽溜下的混凝土拌和均匀。
然后将混凝土放入泵车内泵入钢管内。
备用管道、电焊机、气割设备的作用是当堵管发生或泵不上去的时候在混凝土到达位置开孔焊接带闸阀泵管,然后连接备用管道继续压注直至管顶。
备用管道用钢筋固定在拱肋上。
根据拱座施工经验,已有的搅拌站的生产能力每小时可以搅拌出15~18m3混凝土,能够满足钢管混凝土的连续压注。
b.混凝土泵的选择输送泵的额定泵送能力应不小于灌注速率或实际混凝土供应量的2倍;输送泵的额定压力须满足最大泵送压力,即静压力和泵送压力叠加之和。
输送泵的额定扬程应大于1.5倍的灌注顶面高度,本桥要求输送泵的额定扬程大于80m。
顶升压力计算:根据流体力学能量方程知ΔP=γh+∑p,∑p为各种压力损失总和。
γh=2500×9.807×41≈1MPa。
∑p很复杂,有待进一步计算。
综合以上因素暂时选择HBTS60-13-90拖式混凝土高压输送泵,分配阀为S形摆管阀,最大理论输出量60m3,出口处最大压力为13MPa,电机功率为90KW,数量4台,两岸各一台备用。
4、模拟试验为进一步掌握混凝土输送系统的匹配情况及混凝土自身性能,灌注前进行模拟试验:用φ426×12㎜钢管余料对接成41m长的一段管路,内部设置四个法兰盘,法兰盘连接形式同钢拱肋节段连接方式。
布设位置在万州侧边坡上放置。
焊接成型的钢管利用缆索吊运输安放。
钢管利用钢管脚手架竖直支立固定,并设置三向缆风绳将钢管拉住。
混凝土输送泵设置在拱座上,混凝土利用溜槽输送到储料斗里,经储料斗拌和后泵入钢管。
试验要达到的目的:(1)验证混凝土的质量能否满足施工要求;(2)验证混凝土输送方案是否合理;(3)验证混凝土泵选择是否恰当,选出混凝土泵;(4)验证压注后钢管混凝土的密实性;(4)检验施工组织的效率。
5、压注施工(1)骨架φ426×12(20)㎜钢管内混凝土压注施工A.出浆孔、排气孔及压注头制作骨架合拢后在拱顶处每根钢管的顶部开一个φ125㎜的孔,外焊φ168㎜钢管(长120㎝),用δ=12㎜钢板作加劲板,钢管竖直向上,作排气出浆孔。
为减小混凝土在钢管内流动时的空气阻力,同时在施工时观察管内混凝土的情况,沿钢管纵向每隔30m设置一个排气孔,排气孔采用φ50㎜钢管,拱肋钢管上按φ50㎜钢管内径开孔,用δ=12㎜钢板作加劲板。
当排气孔冒混凝土时,应用螺杆堵住排气孔,φ50㎜钢管上端预制内螺纹,并配制相应螺栓(或者用木塞塞紧)。
加劲板焊接骨架钢管采用周边焊,焊缝高12㎜。
下弦管压注头设在离拱脚约7.5m处的钢管侧面,详见图3,与钢管轴线呈30°~50°夹角,上弦管压注头设在离拱脚约2.5m处的钢管顶部,与轴线的角度同下弦管,压注头安装M125截止阀,出渣孔设在拱座上钢管最低点,采用M70截止阀或钢板螺栓连接封闭。
B.截止阀制作M125截止阀自加工成栅栏阀,将2m的125㎜高压泵管一分为二,切口角度按照与主弦管相交的角度来切。
然后在泵管上间隔开4个约18㎜的孔,孔开在安装后泵管的顶部。
用12㎜的钢板焊接一个加固板,并焊接4个16的螺母,拧入4根16的螺栓,螺栓头部磨尖利于插入混凝土中,尾部焊接螺母拧入用。
C.加载设计及压注顺序压注时采取多点对称压注的施工方法。
先下后上,先压注φ426㎜钢管,再压注φ203㎜钢管。
加载设计原则为:设计要求:8根钢管分两次压注,第一次压注完成下弦4根钢管,第二次压注完成上弦4根钢管。
而且,每次压注结束时4根钢管内的混凝土均不得初凝。
根据实验室混凝土试件在标养室测定的初凝时间约为15小时,如果压注顺利的话完全能够在初凝前压注4根。
根据对称受力原则,应同时压注两根钢管。
若根据受力计算可知一根钢管内填充混凝土后对拱肋未产生塑性变形,则可以先压注一根钢管,然后再压注对称的另一根钢管,即实现单根压注循环。
一根钢管应采用两台泵车同时对称泵送,混凝土宜连续灌注,一气呵成。
必须停歇时,最终灌注完成时间不得超过第一盘入管混凝土的初凝时间。
设计要求,第一次压注的两根钢管混凝土的强度均达到设计强度的90%以上才允许给拱肋加载,所以每次加载需要间隔一定时间后进行,间隔时间以同条件养护试件压后的强度来定。
同条件养护试件制作方法:用试模制作试件后不拆除,先用黄油将接缝密封,再用钢板将顶面密封,放置在室外并禁止人员扰动也不浇水,尽量模拟实际情况。
灌注φ203钢管微膨胀水泥浆在主弦管压注后再进行。
一次灌注多少根φ203钢管,由监控单位进行加载计算。
D.压注施工临时堵塞出渣孔,用混凝土泵从两侧向拱顶压注清水,水至拱顶由出浆孔冒出后,打开拱脚处的排渣闸阀,让管内水及渣物流出,沉积在管底的渣物用勺子从出渣口伸进去一点一点掏出来,然后焊接封闭出渣孔。
人工从灌注孔灌注压注口以下的管内混凝土,用振捣棒从灌注孔插入振捣。
混凝土灌至稍低于压注口位置时停止灌注。
立即清理灌注孔并用钢板封闭灌注孔。
灌注管的做法是:在灌注管顶部预先环焊δ=16㎜钢板,并设置4个φ22㎜的螺栓孔,封闭钢板对应设置4个φ22㎜的螺栓孔,封闭时中间挤压橡胶皮垫密封。
泵车的泵管预先与栅阀泵管拼接好。
需要注意的是,在开始压注前,将截止阀螺栓拧出,并在螺栓孔中塞满黄油,再将螺栓拧入后但不穿入泵管内,以便压注后螺栓能顺利插入混凝土中。
待焊缝冷却后压注少量混凝土过压注口。
两边从排气孔用漏斗注入约0.5m3水泥砂浆(即将混凝土配合比中石子扣除),然后继续压注混凝土直至拱顶。
水泥砂浆的目的是减小混凝土与管壁之间的摩擦力,压注过程中根据排气孔观察到的情况随时补浆。
压注过程中保持慢速、均匀、对称、抵压的压注状态,通过锤击的方法了解混凝土的高程,以调整混凝土的压注速度,使两端的混凝土面高差保持在1m范围以内。
混凝土接近拱顶面时,严格控制速度防止混凝土超过拱顶截面时振动而引起钢管骨架纵向失稳。