当前位置:文档之家› 信息论与编码课程设计报告

信息论与编码课程设计报告

目录一:实验原理----------------------------1二:程序源代码--------------------------1三:实验分析-----------------------------6四:实验结论---------------------------7赫夫曼编码一:实验原理哈夫曼编码的具体步骤归纳如下:① 概率统计(如对一幅图像,或m幅同种类型图像作灰度信号统计),得到n个不同概率的信息符号。

② 将n个信源信息符号的n个概率,按概率大小排序。

③ 将n个概率中,最后两个小概率相加,这时概率个数减为n-1个。

④ 将n-1个概率,按大小重新排序。

⑤ 重复③,将新排序后的最后两个小概率再相加,相加和与其余概率再排序。

⑥ 如此反复重复n-2次,得到只剩两个概率序列。

⑦ 以二进制码元赋值,构成哈夫曼码字。

编码结束。

哈夫曼码字长度和信息符号出现概率大小次序正好相反,即大概信息符号分配码字长度短,小概率信息符号分配码字长度长。

C、哈夫曼编码的特点(1)哈夫曼编码的构造顺序明确,但码不是唯一的(因以大赋1还是小的赋1而异;(2)哈夫曼编码的字长参差不齐,硬件实现不方便;(3)只有在概率分布很不均匀时,哈夫曼编码才有显著的效果,而在信源分布均匀时,一般不使用哈夫曼编码。

二:程序源代码:#define MAXVALUE 10000#define MAXLEAF 30#define MAXNODE 59#define MAXBIT 10#define LENTH 30#include ""#include<iostream>typedef struct{float gailv;int flag;int parent;int lchild;int rchild;char ch;int t;}HNodeType;typedef struct{int bit[MAXBIT];int start;}HCodeType;typedef struct{float gailv;char letter;}mytype; /*it's the type of data save in file*/typedef struct filehuff{int count;mytype mydata[MAXLEAF];filehuff(){count=0; };};filehuff filedata;char code[MAXVALUE];HNodeType HuffNode[MAXNODE];void savetofile(){FILE *fp;if((fp=fopen("","wb"))==NULL){printf("打开失败 ....");return;}if(fwrite(&filedata,sizeof(filedata),1,fp)!=1) printf("写入文件失败 ....");fclose(fp);}void openfile(){ FILE *fp;if((fp=fopen("","rb"))==NULL){return;}fread(&filedata,sizeof(filedata),1,fp);}void translate(){char c;int i,j,k=0,m,n=0;printf("请输入你想要译码的二进制序列 ");printf("\n");getchar();scanf("%c",&c);for(i=0;(i<MAXVALUE)&&(c=='1'||c=='0');i++){ code[i]=c;scanf("%c",&c);}printf("对应的信源符号为:");for(j=0;j<=MAXVALUE&&HuffNode[j].parent!=-1;j++) m=j+1;for(j=0,k=m;j<=i;j++){if(code[j]=='0'){n=HuffNode[k].lchild;if(n==-1){printf("%c",HuffNode[k].ch);k=m;j--;continue;}k=n;}else{n=HuffNode[k].rchild;if(n==-1){printf("%c",HuffNode[k].ch);k=m;j--;continue;}k=n;}}}void Huffman(){HCodeType HuffCode[MAXLEAF],cd;int i,j,m1,m2,x1,x2,c,p,m;if==0){ printf("\n输入信源符号总数 : ");scanf("%d",&m);=m;for(i=0;i<2*m-1;i++){ HuffNode[i].gailv=0;HuffNode[i].parent=-1;HuffNode[i].flag=0;HuffNode[i].lchild=-1;HuffNode[i].rchild=-1;HuffNode[i].ch='a';}for(i=0;i<m;i++){ printf("请输入 (概率,信源符号):");scanf("%f %c",&HuffNode[i].gailv,&HuffNode[i].ch);[i].gailv=HuffNode[i].gailv;[i].letter=HuffNode[i].ch;savetofile();}}else{ m=;for(i=0;i<2*m-1;i++){ HuffNode[i].gailv=0;HuffNode[i].parent=-1;HuffNode[i].flag=0;HuffNode[i].lchild=-1;HuffNode[i].rchild=-1;HuffNode[i].ch=3;}for(i=0;i<m;i++){ HuffNode[i].gailv=[i].gailv;HuffNode[i].ch=[i].letter;}}for(i=0;i<m-1;i++){ m1=m2=MAXVALUE;x1=x2=0;for(j=0;j<m+i;j++){ if(HuffNode[j].gailv<m1&&HuffNode[j].flag==0){ m2=m1;x2=x1;m1=HuffNode[j].gailv;x1=j;}else if(HuffNode[j].gailv<m2&&HuffNode[j].flag==0){ m2=HuffNode[j].gailv;x2=j;}}HuffNode[x1].parent=m+i;HuffNode[x2].parent=m+i;HuffNode[x1].flag=1;HuffNode[x2].flag=1;HuffNode[m+i].gailv=HuffNode[x1].gailv+HuffNode[x2].gailv;HuffNode[m+i].lchild=x1;HuffNode[m+i].rchild=x2;}for(i=0;i<m;i++){ =m-1;c=i;p=HuffNode[c].parent;while(p!=-1){ if(HuffNode[p].lchild==c)[]=0;else []=1;;c=p;p=HuffNode[c].parent;}for(j=+1;j<m;j++)HuffCode[i].bit[j]=[j];HuffCode[i].start=;}printf("对应的赫夫曼编码如下:");printf("\n信源符号概率编码\n");for(i=0;i<m;i++){printf("%c %f ",HuffNode[i].ch,HuffNode[i].gailv); for(j=HuffCode[i].start+1;j<m;j++)printf("%d",HuffCode[i].bit[j]);printf("\n");}printf("按任意键继续......\n");}main(){char yn;printf("\n");printf("\n");printf(" 信息论与编码实验 \n");openfile();Huffman();for(;;){printf("\n是否想要把序列译码为信源符号 : (输入 y or n) ");scanf("%c",&yn);if(yn=='y'||yn=='Y')translate();elsebreak;}return 0;system("pause");}三:实验分析编码实例如下:由图中可以看出,符合基本的赫夫曼编码的原理,概率大的用短码,概率小的用长码。

选择译码:结果如下:四:实验结论哈夫曼的具体实现,在数据结构的相关课程曾做相应的实验,所以无论在理解上或是实现上,都不是很困难,程序上实现哈夫曼的编码与译码,由于哈夫曼自身的特点,编码与译码均不是唯一,但是相同的编译码规则还是能实现正确的译码的。

本实验,除了实现编译码的具体实现,还实现数据的存储与读取,这给实验实现方便,不必每次从命令提示符输入数据。

总的来说,通过本次实验,对哈夫曼的编译码有了一个更好的认识。

通过本次试验,对书上的理论知识有了进一步的认识,但是由于对编程软件的知识欠缺,导致有很多地方还是搞不懂,只能向同学学习,讨论。

当然最终还是有一定的欠缺。

对于哈夫曼编码的认识,是在以前的数据结构课程中就接触到的,但是当时只是知道哈夫曼树的编码而已。

仅限于表面上的只是,并未曾想过用程序来实现它。

所以对于此次试验并未有太大的帮助。

通过实验,学到了很多东西,相信对以后的学习会更有帮助的。

相关主题