当前位置:文档之家› 仿生机器人课程报告

仿生机器人课程报告

H a r b i n I n s t i t u t e o f T e c h n o l o g y
仿生感知与先进机器人技术
课程报告(1)
报告题目:仿生机械的发展
院系:机电学院
班级:
姓名:
学号:
哈尔滨工业大学机电工程学院
仿生学及仿生机械学的由来
仿生学(Bionics)是模仿生物的特殊本领的一门科学。

仿生学籍了解生物的结构和功能原理,来研制新的机械和新技术,或解决机械技术的难题。

1960年由美国的J.E.Steele 首先提出。

仿生学这个名词来源于希腊文“Bio”,意思是“生命”,字尾“nic”有“具有……的技术中利用这些原理,提供新的设计思想、工作原理和系统架构的技术科学。

仿生机械学是上世纪60年代初期出现的一门综合性的新兴边缘学科,它是生命科学与工程技术科学相互渗透、相互结合而形成的。

包含着对生物现象进行力学研究,对生物的运动、动作进行工程分析,并把这些成果根据社会的要求付之实用化。

仿生学的研究方向
(1)生物材料力学和机械力学,是以骨或软组织(肌肉、皮肤等)作为对象,通过模型实验方法,测定其应力、变形特性,求出力的分布规律。

还可根据骨骼、肌肉系统力学的研究,对骨和肌肉的相互作用等进行分析。

另外,生物的形态研究也是一大热门。

因为生物的形态经过亿万年的变化,往往已形成最佳结构,如人体骨骼系统具有最少材料、最大强度的构造形态,可以通过最优论的观点来学习模拟建造工程结构系统。

(2)生物流体力学,主要涉及生物的循环系统,关于血液动力学等的研究已有很长的历史,但仍有许许多多的问题尚未解决,特别是因为它的研究与心血管疾病关系十分密切,已成为一门倍受关注的学科。

(3)生物运动学,生物的运动十分复杂,因为它与骨骼和肌肉的力学现象、感觉反馈及中枢控制牵连在一起。

虽然各种生物的运动或人体各种器官的运动测定与分析都是重要的基础研究,但在仿生机械学中,目前特别重视人体上肢运动及步行姿态的测定与分析,因为人体上肢运动机能非常复杂,而下肢运动分析对动力学研究十分典型。

这对康复工程的研究也有很大的帮助。

(4)生物运动能量学,生物的形态是最优的,同样,节约能量消耗量也是生物的基本原理。

从运动能量消耗最优性的特点对生物体的运动形态、结构和功能等进行分析、研究,特别是对有关能量的传递与变换的研究,是很有意义的。

(5)康复工程学,包括如动力假肢、电动轮椅、病残者用环境控制系统等。

它涉及许多学科和技术,比如对于动力假肢,只有在解决了材料、能源、控制方式、信号反馈与精密机械等各种问题之后才能完成,而且这些装置还要作为一种人——机系统进行评价、试用,走向实用化的道路是非常艰难和曲折的。

(6)机器人的工程学,是把生物学的知识应用于工程领域的典型范例,其目的一是省力;二是在宇宙、海洋、原子能生产、灾害现场等异常环境中帮助和代替人类进行作业。

机器人不仅要有移动功能的人造手足,而且还要有感觉反馈功能及人工智能。

目前研究热点为人造手、步行机械、三维物体的声音识别等。

国内外对仿生机械学的研究
仿人机器人
自1983年以来,美国研制出一系列7自由度拟人单臂和双臂一体机器人,并已用于空
间站实验.1986年美国犹他州大学工程设计中心研制成功了著名的UTAHM IT灵巧手,该手有4指,拇指2关节,其余3指各有3关节,手指关节绳索驱动并设有张力传感器. 1990年由贝尔实验室完成了灵巧手的软硬件控制系统,并模拟人手的拿、夹、抓、握物体等多种动作进行了实验. 1992年日本进行多指仿人手臂真实作业的研究,系统由主从手臂及传感控制系统组成,其灵巧手有4指,每指有3个关节,手具有14个自由度.随着多指灵巧手研究的发展,具有灵巧手的仿人臂及其系统的研究愈来愈受到重视.日本本田公司和大阪大学联合推出的P1、P2和P3型仿人步行机器人,将仿人机器人的研究推向一个崭新的高度.在P3的基础上本田公司又研制了“A simo”智能机器人, “A simo”机器人高1. 2m ,体重43kg,它可以爬楼梯,以6km / h的速度奔跑,可以识别各种各样的声音,还能够通过头部照相机捕捉到的画面和事先设计好的程序识别人类的各种手势运动以及10种不同的脸型,可以
和人手拉着手走路,使用手推车搬运物品等.国内一些科研院所也进行了仿人机器人的研究.北京航空航天大学机器人研究所在国家" 863 "智能机器人主题支持下,研制出了能实现简单抓持和操作作业的3指9自由度灵巧手.其仿人手臂具有工作空间大、关节无奇异姿态、结构紧凑等特点,通过软件控制可实现避障、回避关节极限和优化动力学性能等.
水下仿生机器人
在水下仿生机器人方面,水下机器人由于其所处的特殊环境,在机构设计上比陆地机器人难度大。

在水下深度控制、深水压力、线路绝缘处理及防漏、驱动原理、周围模糊
环境的识别等诸多方面的设计均需考虑。

以往的水下机器人采用的都是鱼雷状的外形,用涡轮机驱动,具有坚硬的外壳以抵抗水压。

由于传统的操纵与推进装置的体积大、重量大、效率低、噪音大和机动性差等问题一直限制了微小型无人水下探测器和自主式水下机器人的发展。

鱼类在水下的行进速度很快,金枪鱼速度可达105km /h,而人类最快的潜艇速度只有84km /h。

所以鱼的综合能力是人类目前所使用的传统推进和控制装置所无法比拟的,鱼类的推进方式已成为人们研制新型高速、低噪音、机动灵活的柔体潜水器模仿的对象。

仿鱼推进器效率可达到70% ~90% ,与水的相对速度比螺旋桨推进器小得多,有效地解决了噪音问题。

美国麻省理工学院和日本都研制出了仿鱼机器人。

在国内,中科院沈阳自动化研究所和北京航空航天大学机器人研究所已研制了机器鱼样机。

美国罗克威尔公司和IS机器人公司研制的扫雷机器蟹,得到了美国国防高级研究计划局及海军研究局的资助. 这种扫雷机器蟹可以隐藏在海浪下面,在水中行走,也可以通过振动,将整个身子隐藏在泥沙中。

扫雷机器蟹长约560mm,重10. 4kg。

它还装备了多个状态传感器和集成的控制系统,并且每条腿都具有2个运动自由度,当地形改变时,通过这些系统可迅速地调整机器人的姿态和运动方式,使机器人能稳定、迅速地到达目标区域。

当遇到水雷时,就把它抓住,等待控制中心的命令. 一旦收到信号,就会自己爆炸,同时引爆水雷。

空中仿生机器人
空中机器人即具有自主导航能力,无人驾驶的飞行器。

这类机器人活动空间广阔、运动速度快,居高临下而不受地形限制。

在军事、森林火灾以及灾难搜救中,前景极好. 其飞行原理分为:固定翼飞行、旋翼飞行和扑翼飞行。

目前国内外广泛关注的微型飞行器侧重于扑翼机的研究。

它模仿鸟类或昆虫的扑翼飞行原理,将举升、悬停和推进功能集于一个扑翼系统,可以用很小的能量做长距离飞行,同时具有较强的机动性,适合于长时间无能源补给及远距离条件下执行任务.美国加州大学伯克利分校的科学家们利用仿生学原理制造出了世界上第一只能飞翔的“机器蝇”。

他们利用一种类似玻璃纸的原料聚酰亚胺,造出了只有长10mm,宽3mm,厚0. 005mm的仿生翅膀。

它能够每秒钟扇动150下,而且还让机器蝇实现了绑在一根细线上的半自主飞行。

其重量只有0. 1g,身高不到30mm,在100m上空飞行,人们用肉眼几乎发现不了它,而它却可以拍出极为清晰的照片传回来。

美国五角大楼对有望成为“微型间谍”的机器蝇极为重视,设想机器蝇在未来战争中,可以进行空中侦察,甚至可以带上微型炸药,袭击指定目标。

在未来的机器蝇身上,将安装许多传感器和微型摄像机,可以用来发现森林火灾,在灾难中搜寻废墟中的幸存者。

地面仿生机器人
美国、日本、德国、英国、法国等国家都开展了蛇形机器人的研究,并研制出许多样机。

日本东京大学的Hirose教授从仿生学的角度,在1972年研制了第一台蛇形机器人样机。

美国卡内基- 梅隆大学近日研究出一种可以攀爬管道的蛇形机器人,这种蛇形机器人大部分由轻质的铝或塑料组成,最大也只有成人手臂大小。

机器人配有摄像机和电子传感器,可以接受遥控指挥。

蛇形机器人可以成功上下一根塑料管道,并可以跨越废墟碎片间的巨大空隙以及在草丛中来去自由。

让蛇形机器人在坍塌废墟中穿梭,能更快地找到幸存者,为灾难救援工作带来了技术突破。

在国内,上海交通大学、中科院沈阳自动化研究所、国防科技大学等单位相继研制出了蛇形机器人样机。

机器蛇,能扭动身躯,在地上或草丛中蜿蜒爬行,可前进、后退,转弯和加速,最大前进速度可达20m /min,披上特制的“蛇皮”后还能像蛇一样在水中游泳。

机器蛇头部安装有视频监视器,可以将机器蛇运动前方的情况实时传输到电脑中,科研人员则可根据实时传输的图像观察运动前方的情景,不断向机器蛇发出各种遥控指令。

.
课程感想
我们通过对这个课程的学习,初步了解了有关仿生机械的知识。

对其简单的结构以及工作原理也有了初步的认识。

这个课程也增加了我们对仿生机械的关注度。

如果有兴趣深入研究,相信这一段时间的学习已经为我们打下了一个良好的基础。

根据老师所讲,要解决机器人面临的问题必须向自然界学习,从自然界为人类提供的丰富多彩的实例中寻求解决问题的途径,通过对自然界生物的学习、模仿、复制和再造的过程中,发现和发展相关的理论和技术方法,使机器人在功能和技术层次上不断提高。

下一步的学习以此为中心应该是比较合理的。

相关主题