当前位置:
文档之家› 第四章 细胞破碎和分离技术..
第四章 细胞破碎和分离技术..
(二)膨胀床分离技术
1、膨胀床的定义
(1)固定床:又称填充床,填充的固体物通常呈 颗粒状,堆积成一定高度的床层。床层静止不动, 流体通过床层进行分离纯化。 (2)流化床:当流体通过床层的速度逐渐提高到 某值时,填料颗粒出现松动,颗粒间空隙增大,床 层体积出现膨胀,但是颗粒仍逗留在床层内而不被 流体带出。床层的这种状态和液体相似称为流化床
气体
3、应用 (1)表面活性物质的分离纯化
如蛋白质,废水中的去污剂等
(2)能与表面活性物质结合的任何物质
如金属离子
如:环境领域
从工业污水如电镀废水、纺织废水中分离和回 收金属离子。
回收:废水溶液中的Cu2+ 表面活性剂:十二烷基硫酸钠(SDS) 回收率:45.5%
例:生物工程领域(泡沫分离大肠杆菌)
三、选择破碎方法的依据
1、细胞的处理量 2、细胞壁的强度和结构 3、目标产物对破碎条件的敏感性 4、破碎程度 适宜的操作条件应有高的产物释放率,低 的能耗和便于后步提取这三方面进行权衡
作业与思考题
1、简要说明常用的细胞破碎方法、原理及特点?
四、从发酵液直接分离产物
细胞破碎
目标产物
细胞碎片很小,很难用 过滤法除去。
(三)化学法(化学渗透法)
1、碱处理 2、酸处理 3、化学试剂法
1、碱处理 pH值=11.5---12.5碱处理可导致细胞溶解。
优点:价格便宜,适于任何规模 的操作,易使蛋白使活。
2、酸热法
盐酸对细胞壁中的某些成分(主要是多糖和 蛋白质)的水解作用,使细胞壁结构变疏松, 同时经沸 水 浴处 理 ,细 胞 吸 水 膨 胀 破 裂 。
比较项目 破碎机理 碎片大小 内含物释放 粘度 时间,效率 设备 通用性 经济 应用范围 机械法 切碎细胞 碎片细小 全部 高(核酸多) 时间短,效率高 需专用设备 强 成本低 工业规模,实验室 非机械法 溶解局部壁,膜 细胞碎片较大 部分 低(核酸少) 时间长,效率低 不需专用设备 差(专一性强) 成本高 实验室,部分工业
表面活性剂:月桂酸或硬脂酰胺等
泡沫分离:1min除去90%细胞
10min除去99%细胞
思考题 1、名词解释
超临界流体 泡载分离技术
固定床
膨胀床
2、什么是固定床?流化床?膨胀床?并 简述它们之间的区别?
洋葱质壁分离
2、冷冻-融化法
(1)方法:将细胞放在低温下冷冻,然后在 室温中融化,反复多次而达到破壁作用。 (2)原理:一方面破坏细胞膜的通透性,另 一方面胞内水结晶,形成冰晶粒,细胞液浓度 增高引起细胞溶胀而破裂。
大肠杆菌:可用液氮/37℃反复冻融法破壁
适用于细胞壁较脆弱的菌体,需反复 多次,速率慢,产量低,在冻融过程 中可能引起某些蛋白质变性。
第四章 细胞破碎和分离提 取技术
发酵液或培养液 预处理 固液分离(离心或过滤)
固体沉淀:胞内产物
细胞破碎和细胞碎片分离
清液:胞外产物
目标产物
本章内容
目标产物
一、细胞破碎的主要阻力:细胞壁
细胞破碎的主要目的:破坏细胞壁和细胞膜, 使细胞内物质释放出来。
各种微生物细胞壁组成与结构
二、常用细胞破碎技术及原理
注意:破碎时要采取冷却措施
2、高压匀浆法
注意:团状或丝状真菌不适用
出料口
高压匀浆机 进料口
利用高压迫使悬浮液通过针形阀,由于突然减压 和高速冲撞造成细胞破裂
3、超声破碎法
原理:空化作用和搅拌作用
缺点:产生的热量不容易驱散,不适 于大规模操作,主要用于实验室。
不同机械破碎方法的比较
技术 原理
缺点:破壁效果差,后续处理难除HCl。
3、化学试剂法
(1)EDTA螯合法:导致外层膜不稳定或溶解
革兰氏阳性菌
革兰氏阴性菌
革兰氏阴性菌的外层膜结构通常靠二价阳离子 Ca2+ 或 Mg2+ 结合脂多糖和蛋白质来维持,一旦 EDTA将Ca2+或Mg2+ 螯合,大量的脂多糖分子将脱 落,使细胞壁外层膜出现洞穴。这些区域由内层 膜的磷脂来填补,从而导致内层膜通透性的增强。
(2)有机溶剂法
有机溶剂能溶解细胞壁的脂类,从而改变细 胞通透性。
(3)表面活性物质
能溶解膜结构中的脂蛋白,使细胞通透性增加。
化学法的优缺点 优点 细胞外形保持完整,碎片少,浆液粘度低,
易于固液分离和进一步提取。
①通用性差; 缺点 ②时间长,效率低,一般胞内物质释放率 不超过 80%。 ③有些化学试剂有毒,后续工作需设法分 离除去。
(5)膨胀床与流化床的区别
流化床的填料和液体在床层内混合程度高,吸附效 率低,而膨胀床的填充颗粒基本悬浮于固定的位置, 液体的流动与固定床相似,接近平推流,吸附效率 高。
2、膨胀床装置
调节柱床高度
色 谱 柱
保证液体以平推流形式 流过柱子
3、膨胀床吸附剂
(1)吸附剂应具备的条件 ①吸附性能好 ②沉降速率高 ③吸附剂要在粒径和密度上有差异 ④有良好孔道结构,不易被污染
纳豆激酶
1980年,日本心脑血管专家须见洋行博士, 从事溶解血栓药物研究工作
“下午两点半”实验 下午两点半:纳豆提取物加入到人工 血栓中;
下午五点半:血栓溶解2厘米
纳豆的制作
1、泡豆蒸豆
大豆,加水浸泡一夜后,蒸烂。
2、接种纳豆菌
纳豆菌用热水溶解后,加入到大豆中,搅拌均匀,分装。
3、在恒温下发酵14-36小时 4、后熟(活菌低温休眠)
细胞碎片去除和产品纯化同步的方法
(一)双水相分离技术 1、双水相体系简介
1896年,荷兰微生物学家Beijerinck发现
明胶 琼脂(或可溶性淀粉)
传统的双水相体系是指高聚物双水相体系
憎水程度有所差异
2、常用双水相体系
(1)聚乙二醇(PEG)/葡聚糖;
(2)聚乙二醇(PEG)/盐相(硫酸盐或者磷酸盐)
(3)膨胀床
稳定的、返混很小的流化床,即所谓的膨胀床,它 既能比较容易地让细胞或细胞碎片通过填料层,又 能以填充床的模式来吸附目标产物。
(4)膨胀床与固定床的区别
膨胀床吸附技术
膨胀床的床层上部安装有可调节床层高度的调节 器,当料液从床底输入时,床层产生膨胀,高度 调节器上升,床层空隙增加,允许菌体细胞或细 胞碎片自由通过。因此,膨胀床吸附操作可直接 处理菌体发酵液或细胞匀浆液,回收其中的目标 产物。 节省离心或过 滤等处理过程
聚乙二醇(PEG) 无毒、无刺激性,具有良好的水溶性
3、双水相体系分离细胞碎片 优点:设备简单,容易放大 缺点:规模放大时,成本增加
目标产物 细胞或细胞碎片 用PEG1500/NaH2PO4体系从 Trichoderma koningii发酵液中分离纯化 β - 木糖苷酶,该酶主要分配在下相,下 相酶活回收率96.3%,纯化倍数33。
(2)常用吸附剂
物理吸附,化学吸附 和离子交换吸附
多糖包埋石英砂,玻璃微球等。 如Streamline介质:在石英砂外表吸附容量
4、膨胀床的操作(5个步骤)
(1)平衡:用平衡缓冲液让膨胀床达到平衡,保持 一定的膨胀率。
膨胀2倍,吸附性能最好
(四)生物法 1、酶溶法
(1)原理:利用酶溶解细胞壁,使细胞壁受到部分 或完全破坏; (2)常用的酶:溶菌酶、 β-1 ,3-葡聚糖酶、
β-1,6-葡聚糖酶、蛋白酶等。
其中溶菌酶主要用于细菌类,其他酶对酵母作用 较显著。
溶菌酶:能直接水解G+菌细胞壁,作用位 点是肽聚糖多肽链中的β-1,4糖甘键。
G+菌的细胞壁
G-菌的细胞壁
2、自溶法
通过调节温度、pH等诱导细胞产生溶解自身的酶。
45-50℃ 酵母 12-24h 自溶
(五)超临界细胞破碎技术
1、超临界流体
(1)临界温度:在温度高于某一数值时,任何大的 压力均不能使该物质由气相转化为液相,此时的温 度即被称之为临界温度; (2)临界压力:临界温度下,气体能被液化的最低 压力称为临界压力。 (3)超临界流体:指温度和压力处于临界条件之上 的流体。
2、超临界CO2的破壁原理
CO2的临界值:31.26℃;7.38MPa 超临界CO2密度近于液体,粘度近于气体,扩 散系数为液体的100倍,因而具有惊人的溶解 能力。 超临界CO2易于渗透到细胞内,突然降压后, 因细胞内外较大的压差而使细胞急剧膨胀而 破裂。
超临界细胞破碎技术适用于各类细胞的破碎
机械法和非机械法破碎的比较
发酵后,放在冰箱内低温熟成数小时,做好的纳 豆无论是外观还是口感都会更好。
(三)泡载分离技术
1、定义
又称泡沫分离或泡沫吸附分离,是以气泡为介 质,利用组分的表面活性差异进行分离的技术。
空气
2、原理
通过向溶液鼓泡形成泡沫层,表面活性物质 会聚集在泡沫层内,然后将泡沫层与液相主 体分离。
破沫器
泡沫 活性剂补充口 液体 泡沫液
。
成本
举例
珠磨法
固体剪切作用
便宜
适中 昂贵
大规模处理
大规模处理 小规模处理
高压匀浆法 液体剪切作用 超声波法 液体剪切作用
(二)物理法
1、渗透压冲击法 2、冷冻-融化法
1、渗透压冲击法(最温和)
将细胞放在高渗溶液中(如高浓度蔗糖溶液),由 于渗透压的作用,细胞内水分便向外渗出,细胞发 生收缩,当达到平衡后,将细胞转入水或低渗缓冲 液中,由于渗透压的突然变化,胞外的水迅速渗入 胞内,引起细胞快速膨胀而破裂。 仅适用于细胞壁较脆弱的细胞。
通过流速控制膨胀率
(2)进料吸附
把目标产物吸附在吸附剂上,让杂质或细胞碎片等 固体颗粒流出膨胀床。
(3)洗涤
洗去留在柱内的细胞、细胞碎片和弱吸附性 的杂质。