第一章激光器原理可以肯定地说:本世纪最后的伟大发明之一是激光技术。
它自一九五八年问世以来,已经逐步地然而是坚定地渗透到了科研、军事、工业等各个领域。
不是吗?看看我们的周围,你就可以轻易地找到它应用的实例:医院中的激光诊断及激光治疗机、商店中的条码识别器、办公室中的激光打印机、把我们与世界各地联结在一起的光纤等等,就是在我们的家中也有它的身影:激光唱机、激光影碟机。
人类发明了多种多样的激光器。
诸如:气体激光器(He-Ne激光器、CO2激光器等)、CO2为E1(例如:E1-E0)原子只能吸收带有几个能量的光子。
光子的能量决定于光子本身的波长。
所以,原子只能吸收几个特定波长的光子。
正常情况下,原子吸收能量后会在上能级停留一段时间(这一时间被称为原子的上能级寿命),然后向任意一个方向发射一个光子并返回基态。
这一现象称为原子的自发发射。
对这一现象,图1.3作了形象的描述。
图1.1原子的结构图1.2原子的能级图1.5原子在各能级上的分布发射。
在受激发射的同时,要设法使下能级的原子持续地跃迁到上能级,以维持粒子数反转,使受激发射能够持续地进行下去。
受激发射所产生的光子都具有相同的波长、方向及相位,所以受激发射的光是很强的。
这就是激光。
激光这个词是从英文原文“LASER”一词翻译过来的,它的完整的英文原文是“LightAmplificationbyStimulatedEmissionofRadiation”(光辐射受激发射放大),“LASER”是它的缩写。
简单地说:激光器的实质是一个光放大器。
在实践中,要想产生激光,就必须满足两个条件:首先找到能够实现粒子数反转的工作物质,也就是激光介质;第二要建立一个谐振腔,使某一个频率的能量源(可以是谐振腔外的,也可以是谐振腔内的)在腔内谐振,在激光介质中多次往返时,有足够的机会去激励(泵Nd:YAGm的光将Nd:YAG晶体棒与氪灯并排放置在一个椭圆型的光学腔内,光学腔的内表面形状是经过精心设计的,以便保证氪灯发出的泵浦光能够全部聚集到Nd:YAG晶体棒的中心轴上。
由一个反射率为100%的反射镜作后镜,前镜的反射率为精心设计的90%(透过率为10%),它们共同组成光学谐振腔,以实现光学谐振。
Nd(钕)原子的能量转移过程分为四步(在图1.7中对这一过程有详细图1.7Nd:YAG激光器原理图的描述),第一步:Nd原子在氪灯发出的波长为0.73μm和0.8μm泵浦光的激励下,处于基态的Nd原子跃迁到两个上能级中的一个,原子在这里的上能级寿命非常短,大约只有10-7秒,这里称这一能级为激发态;第二步:原子在激发态迅速地进行一次无发射的跃迁,到达另一个上能级,原子在这里的上能级寿命较长,大约为10-4秒,这一能级称为亚稳态,原子在这里形成粒子数反转;第三步:当原子在这里受激而跃迁到达下能级时,就会发射出波长为1.06μm的光子,这就是激光;第四步:原子在这里再发生一次无发射的跃迁到达基态,准备重复上述过程。
激光器原理1.2.2CO2CO2动(如图c, CO2建立很容易跃迁到激光能级上来,这是因为它们都是反对称振动能级,而激光能级又是其中最低的一个。
在较高能级的分子是不稳定的,它们总是力图向较低能级跃迁,因此在激光能级就会积聚大量的粒子,这就是所谓串级跃迁。
⒊谐振碰撞:处于更高反对称振动能级上的分子还可以通过与基态CO2分子的碰撞,把能量交给后者使其激发到激光能级,而自己成为低一级的反对称振动能级分子。
这一类碰撞是谐振的,发生的几率很大,对增加激光能级的粒子数有很大的贡献。
⒋复合过程:在CO2分子放电过程中,有部分CO2分子分解为CO和O,同时也存在部分CO和O复合成CO2分子的过程,在它们复合时会把原来分解时吸收的能量放出,因此复合而成的CO2分子就会被这部分能量激发到激光能级。
以上这四种基本过程是CO2分子被激发到激光能级去的四条途径。
另外,为实现粒子数反转以便产生受激辐射,还必须抽空下能级。
CO2激光器按激励方式可分为横向激励激光器、气动激光器、化学激励激光器、射频激励激光器,等等。
第二章激光打标机的种类“绘图仪式”,因为它的工作方式类似于笔式绘图仪。
又由于在打标过程中,两个反射镜带着激光束做大范围的运动,就象激光束在飞来飞去,所以又有人称之为“飞行光学式”打标机。
与“工作台式”激光打标机相比,它的运动机构变得轻巧,构造更加简单,但由于在打标过程中激光光束的光程是不断变化的,最终作用在工件表面的光斑质量难以一致。
这种形式的激光打标机在不降低激光光斑能量密度的情况下,打标范围容易做得很大,但图2.2“绘图仪式”激光打标机原理示意图难以对精细图案进行打标,打标速度较慢。
⒉利用振镜扫描器使激光束发生偏转及运动。
由激光器射出的激光束顺序投射到第一、第二振镜扫描器上,它们分别使激光束在平面的X、Y两个方向上扫描,在计算机的控制下,激光束经聚焦透镜聚焦后就会在平面上扫描出所要求的图案(见图2.3)。
这种打标方式我们称之为“振镜扫描式”,它的最大优点是打标速度快,打标精细,可以处理各种精细文字、图案的打标,缺点是造价较高,很难扩大打标视场。
但由于它打标速度快,打标精细,已经成为激光打标机的主流产品。
图2.3“振镜扫描式”激光打标机工作原理示意图激光打标机还可按照所选用的激光器类型来分类,诸如:CO2激光打标机、Nd:YAG激YAG“Quality”声光将产生声波,声波作用在水晶上而压迫水晶,这将使水晶的折射率发生变化,从Nd:YAG晶体中发出的光在通过声光Q开关时将被折射而偏离后反射镜。
由于用于受激发射的光反馈消失了,激光产生的过程也就中断了(如图3.1所示)。
图3.1声光Q开关工作原理示意图Nd是一种十分难得的优质激光介质,它的上能级寿命相对较长,达到了10-4秒。
当射频信号使Q开关破坏了光学谐振腔的谐振条件从而阻断激光输出时,它的内部仍然在吸收氪灯发出的光能而形成粒子数反转,由于较长的上能级寿命,受激原子不会很快回到下能级。
在没有激光输出期间,上能级积聚了极大的能量,当射频信号一旦取消而恢复光学反馈时,将会产生数千瓦的激光峰值功率输出。
Q开关为在功率较低的激光器上产生高峰值功率短脉宽的激光脉冲提供了极好的方法。
YAG系列激光打标机采用的声光Q开关是由熔石英制成的,采用LiNbo3单晶作压电声学换能器。
为了提高声光Q开关对Nd:YAG激光的透过率,在熔石英的两个通光面表面镀1.06μm硬增透膜。
3.2激光脉冲控制器对于采用射频激励CO2激光器的CO2系列激光打标机来说,有没有激光脉冲控制器似乎都可以对工件进行打标加工。
但实践证明,加有激光脉冲控制器的激光打标机打标质量明显系列2 Nd:YAG激光器所用的泵浦源氪灯,CO2激光器的激光管都需要一个稳定、可靠的直流电源,电源的稳定性直接影响激光输出的稳定性。
Nd:YAG激光器所用的电源还必须包括一个能产生高压启动脉冲的点燃电路,以引燃氪灯。
大恒激光生产的激光打标机均采用IGBT开关电源,由于设计合理、制作精良,保证了电源的稳定性和可靠性。
Nd:YAG激光器所用的泵浦源──大功率氪灯,在发光过程中会产生大量的热;CO2激光器在工作时同样会产生一定的热量(虽然不如Nd:YAG激光器产生的热量多)。
若不及时将这些热量去掉,不仅会影响激光器的正常使用和缩短氪灯的使用寿命,更为严重的是将会发生炸腔或损坏CO2激光管的恶性事故,使昂贵的Nd:YAG晶体棒及镀金腔或CO2激光器报废。
施加于声光Q开关上的射频信号,被压电晶体吸收后,一部分能量转变成超声波,还有一部分变成热;尽管Q开关中的熔石英晶体对激光是透明的,但还会吸收一部分光能,这些能量转变为热。
这些热量会烧坏压电换能器的电极,烧坏压电换能器,甚至会烧坏熔石英晶体。
去除热量的最有效的方法是加装一套水循环装置,靠水的循环来带走热量。
对于Nd:YAG 激光器,由于氪灯表面的温度很高,必须考虑不使氪灯表面结垢;冷却水直接流过氪灯表面,离子水。
一个发出的激光并不是理想的平行光,它有一个很小的发散角,这一很小的发散角会影响到聚焦透镜的聚焦效果。
所以在聚焦透镜之前要有一个扩束镜用以压低光束的发散角。
扩束镜除了可以压低光束的发散角外,还可以扩大激光输出光束的直径。
我们知道,聚焦后光斑的大小取决于入射光束直径和聚焦透镜的焦距:入射光束直径越大,聚焦后光斑直径越小。
入射光束直径的增大,还可以降低激光光路中使激光光束改变方向的反射镜上的激光能量密度,保证了反射镜在长时间工作时不被激光束烧坏。
按照聚焦透镜在光路中相对于反射镜所处的位置,可以分为前聚焦和后聚焦两种方式。
下面我们以振镜扫描式激光打标机为例来介绍激光打标机的光学系统。
5.1前聚焦方式图5.1前聚焦方式示意图前聚焦方式是因聚焦透镜比反射镜更靠近激光器(处在反射镜的前面)而得名。
聚焦透镜安装在扩束镜和振镜扫描器之间(见图5.1),它的最大优点是价格较为低廉、且可获得较大的打标范围。
这一方式的主要缺点是:光斑直径较大,这是由于前聚焦方式选用的聚焦透镜的焦距较长,而聚焦光斑的直径与聚焦镜的焦距成正比,这是为了容纳振镜扫描器,聚焦透镜不得不采用较大的焦距,由此导致打标的能量密度降低。
另外,前聚焦方式只能选用普通聚焦透镜,这种透镜的焦点位置是镜头后方的一个圆弧面,而多数情况下工件表面是一个平面,当光束(见图光打标机均采用这种聚焦方式。