当前位置:文档之家› 高岭土的高温改性

高岭土的高温改性

高岭土的高温改性1.文献综述质纯的高岭土具有白度高、质软、易分散悬浮于水中、良好的可塑性和高的粘结性、优良的电绝缘性能;具有良好的抗酸溶性、很低的阳离子交换量、较好的耐火性等理化性质。

因此高岭土已成为造纸、陶瓷、橡胶、化工、涂料、医药和国防等几十个行业所必需的矿物原料。

高岭土在造纸工业的应用十分广泛。

主要有两个领域,一个是在造纸(或称抄纸)过程中使用的填料,另一个是在表面涂布过程中使用的颜料。

原子反应堆、航天飞机和宇宙飞船的耐高温瓷器部件,也用高岭土制成。

目前,全球高岭土总产量约为4000万吨(该数据属于简单的国与国产量的相加,其中没有统计原矿的贸易量,包含较多的重复计算),其中精制土约为2350万吨。

造纸工业是精制高岭土最大的消费部门,约占高岭土总消费量的60%。

据加拿大Temanex咨询公司提供的数据,2000年全球纸和纸板总产量约为31900万吨,全球造纸涂料用高岭土总用量为约1360万吨。

对于一般文化纸,填料量占纸重量的10-20%。

对于涂布纸和板( 主要包括轻量涂布纸、铜版纸和涂布纸板),除了需要填料外,还需要颜料,填、颜料用的高岭土所占比重为纸重的20-35%。

高岭土应用于造纸,能够给予纸张良好的覆盖性能和良好的涂布光泽性能,还能增加纸张的白度、不透明度,光滑度及印刷适性,极大改善纸张的质量。

高岭土与水结合形成的泥料,在外力作用下能够变形,外力除去后,仍能保持这种形变的性质即为可塑性。

可塑性是高岭土在陶瓷坯体中成型工艺的基础,也是主要的工艺技术指标。

通常用可塑性指数和可塑性指标来表示可塑性的大小。

可塑性指数是指高岭土泥料的液限含水率减去塑限含水率,以百分数表示,即W塑性指数=100(W 液性限度-W塑性限度)。

可塑性指标代表高岭土泥料的成型性能,用可塑仪直接测定泥球受压破碎时的荷重及变形大小可得,以kg·cm表示,往往可塑性指标越高,其成型性能越好。

高岭土的可塑性可分为四级。

可塑性强度可塑性指数可塑性指标强可塑性>153.6中可塑性7—152.5—3.6弱可塑性1—7<2.5非可塑性<1结合性指高岭土与非塑性原料相结合形成可塑性泥团并具有一定干燥强度的性能。

结合能力的测定,是在高岭土中加入标准石英砂(其质量组成0.25—0.15粒级占70%,0.15—0.09mm粒级占30%)。

以其仍能保持可塑泥团时的最高含砂量及干燥后的抗折强度来判断其高低,掺入的砂越多,则说明这种高岭土结合能力就越强。

通常凡可塑性强的高岭土结合能力也强。

烧结性是指将成型的固体粉状高岭土坯体加热至接近其熔点(一般超过1000℃)时,物质自发地充填粒间隙而致密化的性能。

气孔率下降到最低值,密度达到最大值的状态,称为烧结状态,相应的温度称为烧结温度。

继续加热时,试样中的液相不断增加,试样开始变形,此时温度即称转化温度。

烧结温度与转化温度的间隔称烧结范围。

烧结温度和烧结范围在陶瓷工业中是决定坯料配方、选择窑炉类型的重要参数。

试料以烧结温度低、烧结范围宽(100—150℃)为宜,工艺上可以用掺配助熔原料及将不同类型的高岭土按比例掺配的方法控制烧结温度及烧结范围。

烧成收缩性是指已干燥的高岭土坯料在烧成过程中,发生一系列物理化学变化(脱水作用、分解作用、生成莫来石,易熔杂质熔化生成玻璃相充填于质点间的空隙等),而导致制品收缩的性能,也分为线收缩和体收缩两种。

同干燥收缩一样,烧成收缩太大,容易导致坯体开裂。

另外,焙烧时,坯料中若混有大量的石英,它将发生晶型转化(三方→六方),使其体积膨胀,也会产生反收缩。

耐火性是指高岭土抵抗高温不致熔化的能力。

在高温作业下发生软化并开始熔融时温度称耐火度。

其可采用标准测温锥或高温显微直接测定,也可用M.A.别兹别洛道夫经验公式进行计算。

耐火度t(℃)=[360+Al2O3-R2O]/0.228式中:Al2O3为SiO2和Al2O3分析结果之和为100时其中Al2O3所占的质量百分比;R2O为SiO2和Al2O3分析结果之和为100时其它氧化物所占的质量百分比。

通过此公式计算耐火度的误差在50℃以内。

耐火度与高岭土的化学组成有关,纯的高岭土的耐火度一般在1700℃左右,当水云母、长石含量多,钾、钠、铁含量高时,耐火度降低,高岭土的耐火度最低不小于1500℃。

工业部门规定耐火材料的R2O含量小于1.5—2%,Fe2O3小于3%。

结果表明,与未煅烧高岭土相比,低温煅烧高岭土的结合水含量减少,二氧化硅和三氧化铝含量均增大,活性点增加,结构发生变化,粒径较小且均匀,与未煅烧高岭土填充NR胶料相比,低温煅烧高岭土填充NR胶料的硫化特性曲线基本一致,绍尔A型硬度不变,拉伸强度提高,两者的物理性能均达到运动鞋非透明鞋底行业标准的要求。

日前陶瓷、橡胶、塑料、人造革、自水泥、耐火材料、化学等工业以及农业毋有广泛应用。

随着对高蛉土选矿工艺的进一步提高,高岭土的应用范围将日趋广泛。

煤田地质系统备单位,可以从实际情况出发,立足于煤系地层中高蛉土资源及市场需求。

高岭土是自然界中普遍存在的一种非金属矿,过去一般用于生产陶瓷,耐火材料以及少量掺入塑料,橡胶中怍填料。

随着国民经济各领域的日益发展,人们越来越重视高蛉土的深度加工,因为这样不仅可以获取新的具有特殊性能的材料,而且还可提高经济效益。

对高岭土进行深加工舳方法之一,即将巳淘洗和韧步烘干磨耪的高岭土进一步加热,焙烧,脱水,使其变成偏高岭土,用作塑料电缆科的填料,以提高电缆包皮的绝缘性能。

常用的鞋类橡胶填充剂主要有有机填充剂和无机填充剂两种,前者包括再生胶和回收料等,后者包括白炭黑、碳酸钙、钛白粉、碳酸镁、氧化镁、炭黑和锌氧粉等。

高岭土是近几年开发的一种新型橡胶制品填充剂。

但是在高岭土的所有应用都必须的经过加工成为细粉,才能加入到其他材料中,完全融合。

2.实验步骤2.1 实验原料:主要原料:煤系高岭土(工业矿,乌海),化学成分见表2.1:表2.1 高岭土矿的主要化学成分(%)其他试剂:氢氧化钠(NaOH)、碳酸钠(Na2CO3)、碳酸钙(CaCO3)、氯化钠(NaCl)、氯化钙(CaCl2)、氯化钾(KCl)、硫酸(H2SO4)、尿素(CO(NH2)2)、碳粉(化学纯试剂)。

其中氢氧化钠、碳酸钠、碳酸钙、氯化钠、氯化钙、氯化钾、氟化钙作为高岭土的煅烧助剂,尿素作为插层剂,碳粉在研究还原气氛对煅烧高岭土白度的影响试验中作为还原剂,提供还原气氛。

2.2 实验设备实验设备见表2.2表2.2 实验设备及型号2.3 方案依据煅烧对于高岭土资源,特别是煤系高岭土的开发、利用和深加工是十分关键的作业之一,无论是生产高档次的填料、涂料及磨料、耐火材料都必须进行煅烧。

煅烧是煤系高岭土脱碳增白的必需措施,煅烧有时还具有精选除杂的效果。

在利用高岭土中的物料组分为原料进行深加工时,煅烧还是增强化学反应活性,提高其有用成分提取率的必要手段。

因此,煤系高岭土深加工的核心技术是煅烧,煅烧是提高煤系煅烧高岭土产品质量的关键工序。

煅烧高岭土产品的特性及应用是由煅烧工艺及设备决定的,由于煅烧目的、煅烧工艺和资源特征的差异,目前尚未推出较理想、可靠的设备。

而对于一定的煅烧设备或煅烧方式来说,煅烧过程中的各种影响因素,如温度、添加剂、气氛以及原料细度等,直接影响高岭土产品的性能。

而煅烧产品的物化性能决定其应用性能和使用价值。

因此本课题的研究对于提高和稳定煅烧高岭土的产品质量、增加其利用价值,以便有效开发我国的煤系高岭土资源,具有重要的理论意义和应用价值。

2.4 研究内容和技术路线研究各种不同煅烧条件对煅烧高岭土物化性能的影响。

主要包括以下内容:(1)同种类的物料及给料细度对煅烧产品白度的影响。

(2)煅烧温度、恒温时间等对煅烧高岭土产品白度的影响。

(3)不同煅烧气氛或煅烧助剂对煅烧高岭土产品的物化性能的影响。

取不同细度的高岭土,研究不同原料细度对煅烧产品的白度、活性等物化性能的影响:在此基础上,选择一定细度原料,在不同的温度下进行煅烧,研究煅烧温度对高岭土性能的影响;选择较佳煅烧温度,以它为定量因素,进行不同的升温速度、恒温时间对煅烧高岭土产品物化性能影响的研究;然后再研究煅烧气氛或煅烧助剂对煅烧高岭土物化性能的影响。

确定了这些影响因素的最佳组合条件后,进行综合实验。

拟采用的技术路线如图2-1:图2-1 实验路线图2.5 性能测试2.5.1 白度这里所测量的白度为蓝光白度(TAPPI)以主波长457nm±0.5nm半峰宽度为44nm蓝色光谱为照射光源,用积分球收集漫反射光,以相对于白色参比标准的反射率作为被测物体白度W=B457式中:W ——试样白度,B457 ——蓝光绝对反射比。

用测色色差计进行测量。

2.4.2 DTA差热分析(DTA)是在程序控制温度下测定物质和参比物之间的温度差和温度关系的一种技术。

物质在加热或冷却过程中的某一特定温度下,往往会发生伴随有吸热或放热效应的物理、化学变化,如晶型转变、沸腾、升华、蒸发、熔融等物理变化,以及氧化还原、分解、脱水和解离等化学变化。

另有一些物理变化如玻璃化转变,虽无热效应发生但比热容等某些物理性质也会发生变化。

此时物质的质量不一定改变,但温度是必定会变化的。

差热分析就是在物质基础这类性质基础上建立的一种技术。

将高岭土粉末研磨,过180目筛子,称取样品12g。

差热分析使用中温差热分析仪CRY-1型差热分析仪,由室温升至1050℃,升温速率为10℃/min。

3.实验结果及讨论原料细度对煅烧产品白度的影响取d90=8µm, d90=16µm, d90=24µm,d90=50µm的原料各30克,放在小坩埚中,其中不加入任何的添加剂,分别在马弗炉中煅烧,煅烧温度为850℃,升温速度为5℃/min,恒温时间为2h。

图3-6原料细度对产品白度的影响曲线图图3-6表示煅烧产品的白度与给料细度的曲线。

结果显示,给料粒度越小,煅烧产品的白度越高,粒度越大,煅烧产品的白度越低。

这是因为粒度粗,煅烧会从原始固相表层开始,并逐步向矿物中心推移,煅烧一定程度后,物料颗粒内部未反应的部分,将被外部固体产物所包裹而形成一层固体反应层。

继续煅烧,反应气体或热传导将先穿过固体反应层,达到内部未反应的界面部分。

这样煅烧反应速度将随反应界面向内部推移而降低,煅烧脱炭、脱羟将逐步变得困难。

若高岭土的粒度足够小,形成疏松的多孔层料,则煅烧反应(热传导)能够顺利地穿过料层,达到料层每个部分的高岭土颗粒表面,并向每个颗粒内部扩散,由于颗粒较小,在每个颗粒表面形成的固体反应层较薄,故煅烧反应易进行,脱炭、脱羟较完全,产品白度高。

所以最佳的粒度取d90=8µm。

不同煅烧温度对白度的影响为了研究不同煅烧温度对煅烧高岭土的白度的影响,取添加剂含量相同、粒度相同的原料在不同的温度下进行煅烧实验研究各种煅烧温度对产品白的影响。

相关主题