高考回归复习—力学选择之爆炸与反冲问题1.如图所示,一枚手榴弹在空中竖直下落,一段时间后爆炸成a 、b 两块,又过了一段时间,a 、b 两块同时落到水平地面上,其中a 飞行的水平距离OA 是b 飞行的水平距离OB 的2倍,忽略空气阻力,则a 、b 两块在爆炸前后( )A .动量增加量之比是1:2B .动量增加量之比是2:1C .动能增加量之比是1:2D .动能增加量之比是2:12.一质量为m 的炮弹在空中飞行,运动至最高点时炸裂成质量相等的a 、b 两块,爆炸前瞬间炮弹速度为v ,方向水平向右,爆炸后a 的速度为2v ,方向水平向左.爆炸过程中转化为动能的化学能是()A .212mv B .2mv C .292mv D .25mv3.如图所示,半径为R 、质量为M 的1/4 光滑圆槽置于光滑的水平地面上,一个质量为m 的小木从槽的顶端由静止滑下.则木块从槽口滑出时的速度大小为()AB C D4.一弹丸在飞行到距离地面5 m高时仅有水平速度 v=2 m/s,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3∶1.不计质量损失,取重力加速度 g=10 m/s 2,则下列图中两块弹片飞行的轨迹可能正确的是()A.B.C.D.5.用如图所示实验能验证动量守恒定律,两块小木块A和B中间夹着一轻质弹簧,用细线捆在一起,放在光滑的水平台面上,将细线烧断,木块A、B被弹簧弹出,最后落在水平地面上落地点与平台边缘的水平距离分别为1ml=,Al=.实验结果表明下列说法正确的是()2mBA.木块A、B离开弹簧时的速度大小之比:1:4v v=A BB.木块A、B的质量之比:1:2m m=A BC.弹簧对木块A、B做功之比:1:1W W=A BD.木块A、B离开弹簧时的动能之比:1:2E E=A B6.向空中发射一枚炮弹,不计空气阻力,当此炮弹的速度恰好沿水平方向时,炮弹炸裂成a、b两块,若质量较大的a的速度方向仍沿原来的方向,则有()A.b的速度方向一定与原来速度方向相反B.从炸裂到落地的这段时间内,a飞行的水平距离一定比b的大C.a、b一定同时到达水平地面D.在炸裂过程中,a、b受到的爆炸力的冲量一定相同7.如图所示,光滑水平面上A、B、C三个质量均为1 kg的物体紧贴着放在一起,A、B之间有微量炸药。
炸药爆炸过程中B对C做的功为4 J,若炸药爆炸过程释放的能量全部转化为三个物体的动能,则炸药爆炸过程中释放出的能量为()A.8 JB.16 JC.24 JD.32 J8.在水平地而的某点斜向上成60°抛出一物体,在物体速度方向刚变为水平方向时,在极短时间内炸裂成a、b两块.已知物体离开地而的速率为20v,a块的速度方向与刚炸裂时物块的方向相同.在不计空气阻力的情况下,则()A.b的速度方向一定与炸裂时物块的方向相反B .a 、b 均做平抛运动,且一定同时到达地面C .a 的平抛初速一定大于ν0,b 的平抛初速一定小于ν0D .炸裂过程中,a 、b 中受到的爆炸力的冲量一定相同9.如图所示,某中学航天兴趣小组的同学将静置在地面上的质量为M (含水)的自制“水火箭”释放升空,在极短的时间内,质量为m 的水以相对地面为0v 的速度竖直向下喷出。
已知重力加速度为g ,空气阻力不计,下列说法正确的是( )A .火箭的推力来源于火箭外的空气对它的反作用力B .水喷出的过程中,火箭和水机械能守恒C .火箭获得的最大速度为0Mv M m- D .火箭上升的最大高度为22022()m v g M m - 10.在垂直于纸面的匀强磁场中,有一原来静止的氡核22286R ,该原子核发生α衰变,放出一个速度为0v 、质量为m 的α粒子和一个质量为M 的反冲核钋(Po ),若氡核发生衰变时,释放的能量全部转化为α粒子和钋核的动能(涉及动量问题时,亏损的质量可忽略不计),以下说法正确的是()A .衰变后α粒子和反冲核钋(Po )在匀强磁场中的运动轨迹如图甲所示,小圆表示α粒子的运动轨迹B .衰变后α粒子和反冲核钋(Po )在匀强磁场中的运动轨迹如图乙所示,大圆表示α粒子的运动轨迹C .衰变过程α粒子和反冲核钋(Po )组成的系统能量守恒,动量不守恒D .衰变过程中,质量亏损为202()2M m Mv m mc +∆= 11.如图所示,质量M=2kg 的滑块套在光滑的水平轨道上,质量m=1kg 的小球通过L=0.5m 的轻质细杆与滑块上的光滑轴O 连接,小球和轻杆可在竖直平面内绕O 轴自由转动,开始轻杆处于水平状态,现给小球一个竖直向上的初速度v0=4m/s ,g 取10m/s2。
则( )A .若锁定滑块,小球通过最高点P 时对轻杆的作用力为12NB .若解除对滑块的锁定,滑块和小球组成的系统动量守恒C .若解除对滑块的锁定,小球通过最高点时速度为3m/sD .若解除对滑块的锁定,小球击中滑块右侧轨道位置点与小球起始位置点间的距离为23m 12.光滑水平面上放有一上表面光滑、倾角为α的斜面A ,斜面质量为M ,底边长为L ,如图所示。
将一质量为m 的可视为质点的滑块B 从斜面的顶端由静止释放,滑块B 经过时间t 刚好滑到斜面底端。
此过程中斜面对滑块的支持力大小为N F ,则下列说法中正确的是( )A .cos αN F mg =B .滑块下滑过程中支持力对B 的冲量大小为cos αN F tC .滑块到达斜面底端时的动能为tan αmgLD .此过程中斜面向左滑动的距离为m L M m+ 13.如图所示,小车AB 放在光滑水平面上,A 端固定一个轻弹簧,B 端粘有油泥,AB 总质量为M ,质量为m 的木块C 放在小车上,用细绳连接于小车的A 端并使弹簧压缩,开始时AB 和C 都静止,当突然烧断细绳时,C 被释放,C 离开弹簧向B 端冲去,并跟B 端油泥粘在一起,忽略一切摩擦,以下说法正确的是()A.弹簧伸长过程中C向右运动,同时AB也向右运动B.C与B碰前,C与AB的速率之比为m:MC.C与油泥粘在一起后,AB继续向右运动D.C与油泥粘在一起后,AB立即停止运动14.如图所示,可视为质点且质量均为1kg的甲、乙两物体紧靠着放在水平地面,物体甲与左侧地面间的动摩擦因数为0.3,物体乙右侧地面光滑。
两物体间夹有炸药,爆炸后两物体沿水平方向左右分离,分离瞬间物体乙的速度大小为3m/s,重力加速度g取10m/s2。
则()A.炸药爆炸后,两物体分离瞬间物体甲的速度大小为3m/sB.甲、乙两物体分离瞬间获得的总能量为18JC.从分离到甲物体停止运动,经过的时间为4sD.甲、乙两物体分离2s时,两物体之间的距离为7.5m15.如图所示,锁定的A、B两球之间压缩一根轻弹簧,静置于光滑水平桌面上,已知A、B两球质量分别为2m和m.过程一:只解除B球锁定,B球被弹出落于距桌边水平距离为s的水平地面上;过程二:同时解除A、B两球锁定,则(两种情况下小球离开桌面前,弹簧均已恢复原长)()A.两种情况下B小球机械能增量均相同B.两过程中,在B球落地前A、B两小球及弹簧组成的系统机械能均守恒C.过程二中,BD.过程一和过程二中,弹簧对B球做功之比为3:216.如图所示,质量为2m的半圆轨道小车静止在光滑的水平地面上,其水平直径AB长度为2R,现将质量为m的小球从距A点正上方h0高处由静止释放,然后由A点经过半圆轨道后从B冲出,在空中能上升到距B点所在水平线的最h处(不计空气阻力,小球可视为质点),则()大高度为034A.小球和小车组成的系统动量守恒B.小球离开小车后做斜上抛运动RC.小车向左运动的最大距离为23hD.小球第二次在空中能上升到距B点所在水平线的最大高度大于0217.如图所示,物体A、B的质量分别为m、2m,物体B置于水平面上,B物体上部半圆形槽的半径为R,将物体A从圆槽的右侧最顶端由静止释放,一切摩擦均不计,则()RA.B向右运动的最大位移大小为23B.A不能到达B圆槽的左侧最高点C.A运动到圆槽的最低点时AD.A运动到圆槽的最低点时B18.如图所示,小车的立柱上O点固定有长L的不可伸长的轻绳,绳的末端拴有小球A(可视为质点).小车静止在光滑的水平面上且OA水平,此时将小球由静止释放.小车的质量是小球的5倍.小球在摆动时不计空气和摩擦阻力.下面说法中正确的是()A.小球和小车组成的系统总动量守恒B.摆动过程中小球和小车组成系统的机械能守恒LC.小球向右最大位移为53D.当小球摆至最低点时,小球与小车的动量大小相等,方向相反,此时小车的19.电推进系统(俗称“电火箭”)是利用电能加热、电离和加速带电粒子,形成向外发射的高速粒子流从而对飞行器产生反冲力。
某飞行器的质量为M,“燃料”电离后产生2价氧离子,经电压为U的电场加速后发射出去,发射功率为P。
已知每个氧离子的质量为m,元电荷为e,假设飞行器原来静止,不计发射氧离子后飞行器质量的变化,下面说法中正确的是()AB.电推进系统每秒钟射出的氧离子数为2PNeUCD.在推进器工作过程中,氧离子和飞行器组成的系统动量守恒20.如图所示,在光滑的水平面上静止放置A、B、C三个物体,A、B、C的质量分别为mA=1kg,mB=3kg,mC=2kg。
物体C为一光滑的圆弧轨道,弧面足够长,物体A、B之间有一根轻质弹簧(弹簧和物体A、B均未栓接),现用力把弹簧压缩后再用绳子把物体A、B固定,使A、B处于静止。
现剪断绳子,之后弹簧把A向左弹出,已知A离开弹簧后的速度大小为3m/s,A、B分开后把弹簧撤去(重力加速度g=10m/s2)。
下说法正确的是()A.弹簧把A、B弹开的过程中释放出的弹性势能为4.5JB.A滑上C上表面的最大离地高度为0.3mC.A从C上离开后不能追上BD.A从C上离开后能追上B参考答案。