最新面试无机化学研究前沿
动态法 利用动态波促使石墨直接转变成金刚石。 动态冲击波可由爆炸、强放电和高速碰撞等瞬时产 生,在被冲击介质中可同时产生高温高压,使石墨 转化为金刚石。该法作用时间短(仅几微秒),压力 及温度不能分别加以控制,但装置相对简单,单次 装料多,因而产量高。产品为微粉金刚石,可通过 烧结成大颗粒多晶体,但质量较差。 石墨转化法所得的金刚石往往是细粒乃至粉末, 使用时往往需烧结。此外,产品中还含有未反应的 石墨、催化剂等杂质,因此还需提纯。这种产品主 要用于精密机械制造领域。
在学术界,一般认为金刚石、石墨、碳笼原子 簇、线型碳是碳的几种同素异形体。
金刚石,原子晶体,碳原子间以sp3杂化成键;
石墨,混合键型或过渡型晶体,碳原子间以sp2 杂化成键;无定形碳和碳黑都是微晶石墨。
富勒烯(碳笼原子簇),分子晶体,碳原子间以 s0.305p0.695杂化轨道成键(3条键) ;碳原子上还有1 条键(s0.085p0.915); 线型碳,分子晶体,碳原子间以sp杂化成键。 其化学稳定性为: 线型碳>石墨>金刚石>富勒烯。
应用
★石墨层间化合物的结构 离子型石墨层间化合物中碳原子基本保持石墨 的平面层状结构,插入层的层间距增大,未插入层 的层间距无变化。石墨层间化合物按插入层的分布 分为不同的阶数:一阶化合物每隔1个碳原子层插 入1层反应物,如C8K; 二阶为每隔2层插入1层反 应物,如C24K;三阶为每隔3层插入1层反应物,如 C36K…… 依此类推。据报道已有阶数为15的层间化 合物。
石墨转化法可分为静态超高压高温法和动态法 两种。 静态超高压高温法 用高压设备压缩传压介质产 生3~10GPa的超高压,并利用电流通过发热体,将 合成腔加热到l000~2000℃高温。其优点是能较长 时间保持稳定的高温高压条件,易于控制。该法可 得到磨料级金刚石,但设备技术要求高。 为了获得粒度较大的优质金刚石单晶,普遍采 用过渡金属(Ni,Fe,Co等)及其合金作触媒,保持 约5GPa的压力、1500K的温度到一定的时间,使石 墨转化金刚石。要获得优质粗粒的金刚石单晶,一 般用石墨片与触媒片交替组装的方式。
碳纤维的性质及其应用 碳纤维具有模量高、强度大、密度小、耐高温、 抗疲劳、抗腐蚀、自润滑等优异性能。从航天、航 空、航海等高技术产业到汽车、建筑、轻工等民用 工业的各个领域正逐渐得到越来越广泛的应用。主 要用于导电、隔热、过滤等方面。 碳纤维增强复合材料作结构材料, 可作飞机的 尾翼或副翼, 通信卫星的天线系统和导波管、航天 飞机的货舱门、燃料箱、助推火箭的外壳。在建筑 方面,可作碳纤维增强水泥地板,并有取代钢筋的 可能性。
日前,国际化学界权威学术刊物《美国化学会 志》(J. Am. Chem. Soc.)刊发了中国科技大学陈乾旺 教授领导的研究组的论文“低温还原二氧化碳(CO2) 合成金刚石” 。 他们自己研制高压反应釜进行实验,用安全无 毒的二氧化碳作原料,使用金属钠作为还原剂,在 440℃和800个大气压的条件下,经过12小时的化学 反应,终于成功地将CO2还原成了金刚石。目前, 已能生长出1.2毫米的金刚石,有望达到宝石级,产 物外观无色、透明,可与天然金刚石媲美 此法CO2转化金刚石的产率达8.9% ,工艺重复 性好,结果日前已申请国际专利。
升华法制得的C60单晶为面心立方结构。
C60的合成 1985年以激光气化石墨法只能制取几毫克的 C60,不足以开展大量的研究。直到1990年,C60的 合成才取得突破。目前C60的合成法主要可分为以下 两种: ★石墨气化法 电弧放电法气化石墨,每小时可气化10g,产 物是一种黑色粉末,是C60和C70的混合物。用升华 法、色谱法等可得到纯的C60和C70。 ★纯碳燃烧法 在573~673 K真空中加热特制的炭黑,收集蒸 气凝结成的固体,制得C60和C70。
富勒烯的应用前景 从化学和材料科学的角度来看,富勒烯具有重 要的学术意义和应用前景,其中最早令人关注的是 金属掺杂富勒烯的超导性。 由于室温下富勒烯是分子晶体,C60的能带结 构表明是半导体,能隙为1.5eV。但经过适当的金 属掺杂后,都能变成超导体。 掺杂富勒烯超导体有两个特点: 一是与一维 有机超导体和三维氧化物超导体不同,掺杂富勒烯 超导体是各向同性非金属三维超导体;二是超导临 界温度Tc比金属超导体高,如掺杂I的IxC60的Tc已达 57 K。
4. 富勒烯
1985年,英国Sussex大学的H. W. Kroto等人用
激光作石墨的气化试验发现了C60,这是一种由60个
碳原子组成的稳定原子簇。此后又发现了C50、C70、
C240乃至C540等,它们都具有空心的球形结构,属于 笼形碳原子簇分子。由于C60的结构类似建筑师 Buckminster Fuller设计的圆顶建筑,因而称为富勒 烯(Fullerend),也有布基球、足球烯、球碳、笼碳
作为非结构材料, 碳纤维复合材料可作密封材 料、耐磨材料、隔热材料、电极材料。 在原子能工程上用碳纤维-石墨复合材料作铀 棒的幕墙材料, 不仅可以防止铀棒的辐射变形, 使其 对中子的吸收截面变小, 反射中子能力增强, 而且在 光氧条件下能耐3000 ℃以上的高温。 将碳纤维进行活化处理,得到活性碳纤维,是 已知的比表面积最大的物质之一(2500 m2· g-1),被称 为第3代活性炭,作为新型吸附剂具有重要的应用 前景。 在医学上,碳纤维增强型塑料是一种理想的人 工心肺管道材料,也可作人工关节、假肢、假牙等。
在共价型石墨层间化合物中,嵌入物与基质碳 原子间的化学键是共价键。一般而言,石墨的层平 面要变形。例如氟化石墨,其碳原子层是折皱的, 折皱面内各碳原子以sp3杂化轨道与其他3个碳原子 及1个氟原子结合,C-C键长与一般C-C单键相等, 层间距为730pm,比未插入层增大一倍多。
★石墨层间化合物的功能与应用 石墨层间化合物的性质因嵌入物不同、阶数不 同而不同,其功能及应用是多方面的,主要可用于: 轻型高导电材料、电极材料、新型催化剂、固体润 滑剂、贮氢及同位素分离材料、防水防油剂等。 电极材料 石墨间隙化合物的电阻比石墨本身还低,在垂 直方向降低了约10倍,沿石墨层水平方向降低了近 100倍。而且间隙化合物具有与真正的金属一样的 电阻,即电阻率随温度升高而升高。 石墨层间化合物适宜作电极。以氟化石墨为正 极,锂为负极的一次电池已工业化。
防水防油剂 如氟化石墨的表面自由能和聚四氟乙烯相近或 略低,显示了极强的疏水性。因此,可利用此疏水 性预防因水而引起的润滑和污染附着。在镀镍时, 如使Ni和氟化石墨共析,可得防水性极强的金属表 面。 石墨复合磁粉 将铁盐插入石墨层间可制得石墨复合磁粉,其 磁性能优于γ-Fe2O3 磁粉,用作磁记录介质,可增 大对带基附着力、减小对磁头的磨损、提高其防潮 性能及温度稳定性。
1. 金刚石
金刚石主要用于精密机械制造、电子工业、光 学工业、半导体工业及化学工业。天然金刚石稀少, 只限于用作装饰品,因此人工合成金刚石正在成为 碳素材料中的重要研究开发领域。 金刚石的合成 金刚石合成已有四十多年的历史。已报道的合 成方法大致可分为两类:石墨转化法和气相合成法 ★石墨转化法
常温常压下石墨转化为金刚石是非自发的,但 在高温高压(由疏松到致密)下可能实现这种转化, 其温度和压力条件因催化剂的种类不同而不同。
3. 碳纤维
碳纤维是由有机纤维经炭化及石墨化处理而得 到的微晶石墨材料。碳纤维的微观结构类似人造石 墨,是乱层石墨结构。
碳纤维的制备 目前应用较普遍的碳纤维主要是聚丙烯腈碳纤 维和沥青碳纤维。 碳纤维的制造包括纤维纺丝、热稳定化(预氧 化)、炭化及石墨化等4个过程。其间伴随的化学变 化,包括脱氢、环化、氧化及脱氧等。
轻型高导电材料 石墨层间化合物的电导率比石墨更高,有的超 过了铜(电导率为5.3×107 S· m-l),且这些物质的密 度比一般金属低,故作为轻型导电材料受到青睬。
固体润滑剂
用氟化石墨作固体润滑剂,具有在高温、真空
或氧化还原气氛中保润滑性能下降的缺陷)。这是由于氟化石 墨的层面由C-F键构成,其表面能极小,容易滑动 之故。
C60分子中碳原子彼此以键键合,其杂化轨道
类型介于sp2与sp3之间,平均键角为116°。碳原子
上剩余的轨道相互形成大键。相邻两六元环的C
-C键长为138.8 pm,五元环与六元环共用的C-C 键长为143.2 pm。 C70为椭球形,C240及C540与C60的差别更大一些, 但都是笼形空心结构。 C60的晶体属分子晶体,晶体结构因晶体获得的 方式不同而异,但均系最紧密堆积所成。用超真空
等名称。
C60 是 20 世纪的重大科学发现之一。 Kroto 等人 因此而荣获1996年诺贝尔化学奖。
富勒烯的结构特点 以C60为代表的富勒烯均是空心球形构型,碳原 子分别以五元环和六元环而构成球状。如C60就是由 12个正五边形和20个正六边形组成的三十二面体, 像一个足球。每个五边形均被5个六边形包围, 而每 个六边形则邻接着3个五边形和3个六边形。富勒烯 族分子中的碳原子数是28、32、50、60、70… 240、 540等偶数系列的“幻数”。
★气相合成法(CVD法) 气相法是用含碳气态物质作碳源,产物往往是 附在基体上的金刚石薄膜。研究表明,含碳气态物 质在一定高温分解出的甲基自由基,甲基自由基相 当于金刚石的活性种子。因为金刚石中的碳处于sp3 杂化状态,甲基中的碳也处于sp3杂化状态,甲基自 由基分解后便以金刚石的形式析出。 气相法成功地制成了膜状金刚石,使金刚石的 应用范围大大扩展,因为高温高压合成的金刚石及 天然金刚石的应用只是利用其高硬度特性,其他优 异的特性均因形态的限制而未能得到很好的开发和 利用。膜状金刚石必然会进入半导体工业、电子工 业及光学等领域。
现及研究都取得了令人瞩目的进展。这些以单质碳 为基础的无机碳化学给人们展现了无限的想象空间。
IBM日前表示将开发在碳纳米管上融合一片集成
电路的器件。该技术有望加快下一代芯片产品的面
世。
美国贝尔实验室的研究小组使用富勒烯在较高温 度下(117K)制造出了电阻为零的有机超导体。