当前位置:文档之家› 静电场专题复习

静电场专题复习

静电场知识点复习一、库仑定律①元电荷:元电荷是指最小的电荷量,用e 表示,大小为e=c 19106.1-⨯。

②库仑定律:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比,作用力的方向在它们的连线上。

表达式:221rq kq F =,其中静电力常量229/.100.9C m N k ⨯=。

二、电场①电场的产生:电荷的周围存在着电场,产生电场的电荷叫做源电荷。

描述电场力的性质的物理量是电场强度,描述电场能的性质的物理量是电势,这两个物理量仅由电场本身决定,与试探电荷无关。

②电场强度:放入电场中某点的电荷所受的静电力与它的电荷量的比值,叫电场强度。

定义式:qFE =,单位:C N /或m V /。

方向:规定与正电荷在该点所受的静电力方向相同,则与负电荷在该点所受静电力的方向相反。

也是该点电场线的切线方向。

区别:q F E =(定义式,适用于任何电场);2rkQ E =(点电荷产生电场的决定式);d U E =(电场强度与电势差间的关系,适用于匀强电场,d 是两点间距离在场强方向上的投影)。

③电场线:在电场中画出的一系列有方向的曲线,曲线上每一点的切线方向表示该点的场强方向,曲线的疏密表示场强的大小。

电场线是为了形象的描述电场而假想的、实际不存在的曲线。

电场线从正电荷或无限远出发,终止于无限远或负电荷,是不闭合、不相交的曲线。

熟悉正、负点电荷、匀强电场、等量异种电荷、等量同种电荷的电场线分布图(教材13页)。

三、电势能、电势、电势差①电势能:由于移动电荷时静电力做的功与路径无关,所以电荷在电场中也具有势能,叫做电势能。

静电力做功与电势能变化的关系式为:P E W ∆-=,即静电力所做的功等于电势能的变化。

所以,当静电力做多少正功,电势能就减小多少;当静电力做多少负功,电势能就增加多少。

静电力做功与电势差的关系式为:AB AB qU W =。

说明:电荷在某点的电势能等于静电力把它从该点移动到零势能位置时所做的功(通常选大地或无限远处电势能为零)。

电势能有正有负,但是标量。

试探电荷在电场中某点的电势能大小为:ϕq E P =。

②电势:电荷在电场中某一点的电势能与它的电荷量的比值,叫做这一点的电势(由电场中这点的性质决定,与试探电荷的q 、E P 无关)。

定义式:qE P=ϕ。

沿着电场线方向电势降低,或电势降低最快的方向就是电场强度的方向。

③电势差与电势的关系式为:B A AB U ϕϕ-=;电势差与静电力做功的关系式为:qW U ABAB =;匀强电场中电势差与电场强度的关系为:Ed U =。

同一点的电势随零电势点的不同而不同(通常选大地或无限远处电势为零),而两点间的电势差与零电势点的选取无关。

④等势面:电场中电势相等的点构成的面。

性质:沿同一等势面移动电荷时静电力不做功;电场线与等势面垂直,且由电势高的等势面指向电势低的等势面;在相邻等势面间电势差相等的情况下,等势面的疏密表示电场的强弱(密强弱疏)。

会画点电荷电场和匀强电场的等势面。

注:W AB 、q 、U AB 、E P 、ϕ等都是标量,但都有正有负,计算时带正负号代入。

四、电容器和电容任何两个彼此绝缘又相距很近的导体就组成一个电容器(容纳电荷)。

电容:电容器所带的电荷量Q 与电容器两极板间的电势差U 的比值,叫做电容器的电容,表示电容器容纳电荷本领的物理量。

定义式:UQ C =,国际单位制中单位为法拉,PF F F 12610101==μ。

平行板电容器的决定式为:kdsC πε4=。

平行板电容器应用的两种情况:①电容器始终与电源相连(U 不变),↓↓↓↑E Q C d ;E Q C S ↑↑↑不变。

②电容器充电后与电源断开(Q 不变),不变E U C d ↑↓↑;↓↓↑↑E U C S 。

(会熟练推导)五、带电粒子在电场中的运动①带电粒子是否考虑重力:微观粒子(如质子、电子、α粒子等)不计重力;宏观微粒(如带电小球、质点、油滴等)考虑重力。

②带电粒子的加速:一平行金属板两板间电压为U ,一带电粒子(q 、m)仅受静电力作用从静止开始,从一板运动到另一板的速度大小?(2021mV qU =) ③带电粒子在电场中的偏转:水平放置的平行金属板,板长为l ,板间电压为U (上正下负),板间距离为d ,一电荷量为q 的带正电粒子(不计重力)以初速度0V 垂直电场方向从左侧射入板间,且能从右侧飞出。

带电粒子在水平方向做匀速直线运动,在竖直方向做初速度为零的匀加速直线运动,轨迹如图。

水平方向:t v L 0= 竖直方向:0mdv quL at v y == 2022221m d v q U La t y == 200t a n m d vq U L v v y ==θ 若是如图所示的运动,则20121mv qU =dU UL mdv qUL at y 1220224221===dU ULmdv qUL v v y 12002tan ===θLv 0y vv 0 v y θθU 1L v 0y vv 0v y θθ L 'y '阶段性测试题一第一章静电场一、选择题1.下列物理量中,属于矢量的是( )A.电势B.电场强度C.功率D.电势能解析:矢量是既有大小又有方向的物理量,标量是只有大小没有方向的物理量,电场强度是矢量,B 选项正确.答案:B2.下面所列举的物理学家及他们的贡献,其中正确的是( )A.元电荷最早由库仑通过油滴实验测出B.牛顿通过扭秤实验测定出了万有引力常量GC.法拉第首先提出了电场的概念且采用了电场线描述电场D.安培总结出了真空中两个静止点电荷之间的相互作用规律解析:元电荷最早是由密里根通过油滴实验测出的,A选项错误;卡文迪许通过扭秤实验测定了万有引力常量G,B选项错误;法拉第首先提出了电场的概念且采用了电场线描述电场,C选项正确;库仑总结出了真空中两个静止点电荷之间的相互作用规律,D选项错误.答案:C3.关于电场强度与电势的关系,下面各种说法中正确的是( )A.电场强度大的地方,电势一定高B.电场强度不变,电势也不变C.电场强度为零处,电势一定为零D.电场强度的方向是电势降低最快的方向解析:电场强度是描述电场力的性质的物理量,电势是描述电场能的性质的物理量,电场强度的大小和电势高低没有必然关系,电场线的方向,即电场强度的方向是电势降低最快的方向,选项A、B、C 错误,选项D正确.答案:D4.在静电场中,将一正电荷从a点移到b点,电场力做了负功,则( )A .该电荷电势能一定减少B .该电荷电势能一定增加C .b 点的电势一定比a 点高D .b 点的电势一定比a 点低解析:正电荷从a 点移到b 点,电场力做负功,正电荷电势能增加,电势升高,φb >φa ,故选项B 、C 正确,A 、D 项错误. 答案:BC5.如图所示,某区域电场线左右对称分布,M 、N 为对称线上两点.下列说法正确的是( )A .M 点电势一定高于N 点电势B .M 点场强一定大于N 点场强C .正电荷在M 点的电势能大于在N 点的电势能D .将电子从M 点移动到N 点,电场力做正功解析:沿电场线方向,电势降低,所以M 点电势比N 点电势高,A 项对;N 点电场线密,则场强大,故B 项错;M 点电势高,正电荷在M 点的电势能大,故C 项对;电子在N 点电势能大,将电子从M 点移到N 点,电场力做负功,故D 项错.答案:AC6.如图所示,平行板电容器经开关S 与电池连接,a 处有一电荷量非常小的点电荷,S 是闭合的,φa表示a 点的电势,F 表示点电荷受到的静电力,现将电容器的B 板向下稍微移动,使两板间的距离增大,则( )A .φa 变大,F 变大B .φa 变大,F 变小C .φa 不变,F 不变D .φa 不变,F 变小解析:从题意可知在使B 板下移的过程中,电容器两端的电压不变,当板间距离增大时,由E =Ud可知板间场强E 减小,故电荷受到的静电力减小,又因为U aA =Ed aA ,所以U aA 减小则U aB 增大,由U aB =φa -0可知,φa 增大,故选项B 正确. 答案:B7.中子内有一个电荷量为+23e 的上夸克和两个电荷量为-13e 的下夸克,一简单模型是三个夸克都在半径为r 的同一圆周上,如图所示.在下图给出的四幅图中,能正确表示出各夸克所受静电作用力的是( )解析:电荷量为+23e 的上夸克受另两个下夸克的吸引力,合力的方向一定竖直向下.对其中一个下夸克,受力如右图所示,由于F 1的水平分力与F 2大小相等,方向相反,故F 1与F 2的合力竖直向上.答案:B8.一带电粒子在匀强电场中的运动轨迹如图所示,如果带电粒子只受电场力作用从a 到b 运动,下列说法正确的是( )A .粒子带正电B .粒子带负电C .粒子所受电场力是恒定的D .带电粒子做匀变速运动解析:由于粒子运动轨迹越来越向上弯曲,可判断它受力方向为竖直向上,所以粒子应带负电,故A 错B 对.又由于该电场是匀强电场,粒子仅受电场力作用,则粒子所受电场力恒定,做匀变速曲线运动,故C 、D 均对. 答案:BCD9.静电场中,带电粒子在电场力作用下从电势为φa 的a 点运动至电势为φb 的b 点.若带电粒子在a 、b 两点的速率分别为v a 、v b ,不计重力,则带电粒子的比荷qm为( )A .v 2a -v 2bφb -φa B .v 2b -v 2aφb -φaC .v 2a -v 2b φb -φaD .v 2b -v 2aφb -φa解析:由电势差公式以及动能定理:W =qU ab =q (φa -φb )=12m (v 2b -v 2a ),可得比荷为qm =v 2b -v 2aφa -φb.答案:C10.在静电场中,下列说法正确的是( )A .沿着电场线方向,电势一定越来越低B .电场强度为零的点,电势一定为零C .电场强度处处相同的区域内,电势也一定处处相同D .只在电场力作用下,正电荷一定从高电势的地方向低电势的地方移动解析:沿着电场线方向,电势一定越来越低,且电势沿电场线方向降低得最快,A 对;电场强度的大小与电势的高低无必然关系,电场强度为零的点,电势不一定为零,电场强度相同的地方,电势不一定相同,B 、C 错;电荷的运动方向除了与电场力方向有关外,还与它的初速度方向有关,D 错. 答案:A11.在真空中有两个等量的正电荷q 1和q 2,分别固定于A 、B 两点,DC 为AB 连线的中垂线,C 为A 、B 两点连线的中点,将一正电荷q 3由C 点沿着中垂线移至无穷远处的过程中,下列结论正确的有( )A .电势能逐渐减小B .电势能逐渐增大C .q 3受到的电场力逐渐减小D .q 3受到的电场力逐渐增大解析:中垂线CD 段上的电场强度方向处处都是竖直向上,故正电荷q 3由C 点沿着中垂线移至无穷远处的过程中,电场力做正功,电势能减小,A 对,B 错;中垂线上由C 到D ,电场强度先变大后变小,q 3受到的电场力先变大后变小,C 、D 错. 答案:A12.如图,一对面积较大的平行板电容器水平放置,带等量异种电荷,B 板固定且接地,A 板用绝缘线悬挂,P 为两板中点.下列结论正确的是( )A .若在两板间充满电介质,P 点电势将升高B .A 、B 两板电荷分别在P 点产生电场的场强大小相等,方向相同C .若将A 板竖直向下平移一小段距离,电容器储存的电能减小D .若将A 板竖直向上平移一小段距离,线的拉力将变大解析:B 板接地,φB =0,PB 间的电势差φP =U PB ,在两板间充满电介质,εr 变大,根据平行板电容器电容的决定式C =εr S 4πkd ,可知C 增大,电容器的电荷量Q 不变,根据U =QC 得,两板间电势差变小,E=Ud,电场强度变小;B 板接地,φB =0,根据电场强度和电势差的关系可知,PB 间的电势φP =U PB =Ed PB ,P 点电势将降低,故A 选项错误;A 、B 板带等量异种电荷,根据电场的性质可知,A 、B 两板电荷分别在P 点产生电场的场强大小相等,方向相同,故B 选项正确;将A 板竖直向下平移一小段距离,根据C =εr S 4πkd ,可知d 减小,C 增大,电容器的电荷量Q 不变,根据U =QC 得,两板间电势差变小,电容器储存的电能减小,故C 选项正确;分析A 板的受力,绳子拉力向上,重力和电场力向下,mg +F =F 绳,将A 板竖直向上平移一小段距离,B 板对A 板的电场力F 变小,线的拉力将变小,故D 选项错误.答案:BC13.高速粒子轰击荧光屏可致其发光.如图,在竖直放置的铅屏A 的右表面上贴着β 射线放射源P ,放射出β粒子(实质是电子)的速度大小为v 0.足够大的荧光屏M 与铅屏A 平行放置,相距d ,其间有水平向左的匀强电场,电场强度大小为E .已知电子电荷量为-e ,质量为m .不考虑相对论效应,则( )A .垂直射到荧光屏M 上的电子速度大小为 2eEdm+v 20 B .到达荧光屏离P 最远的电子运动时间为 2mdeEC .荧光屏上发光半径为2mdv 2eE-4d 2D .到达荧光屏的电子电势能减少了eEd解析:电子从A 到M 的运动过程,电场力做正功,根据动能定理得eEd =12mv 2-12mv 20,解得垂直射到荧光屏M 上的电子速度大小为v =2eEd m+v 20,故选项A 正确;电子的运动方向是任意的,当电子沿平行于A 板的方向运动时到达荧光屏距A 板的距离最远,此时电子做类平抛运动,沿电场线方向:d =12at 2,a =eEm,解得时间t =2mdeE,故B 选项正确;上述电子在垂直于电场线方向运动的距离就是荧光屏上的发光半径:r =v 0t =v 02mdeE,故C 选项错误;电子到达荧光屏的过程中,电场力做正功eEd ,根据功能关系可知,电场力做正功电势能减少,减少量为eEd ,故D 选项正确. 答案:BD)二、计算题(14.如图,真空中xOy 平面直角坐标系上的ABC 三点构成等边三角形,边长L =2.0 m ,若将电荷量均为q =+2.0×10-6C 的两点电荷分别固定在A 、B 点,已知静电力常量k =9.0×109 N·m 2/C 2,求:(1)两点电荷间的库仑力大小; (2)C 点的电场强度的大小和方向.解析:(1)根据库仑定律,A 、B 两点电荷间的库仑力大小为F =k q 2L2,代入数据得,F =9.0×10-3N.(2)A 、B 点电荷在C 点产生的场强大小相等,均为E 1=k q L2,A 、B 两点电荷形成的电场在C 点的合场强大小为E =2E 1cos30°,联立各式并代入数据得,E =7.8×103N/C ,场强E 的方向沿y 轴正向.答案:(1)9.0×10-3N (2)7.8×103N/C ,沿y 轴正向15.如图所示,匀强电场中A 、B 、C 三点构成一个直角三角形,把电荷量q =-2×10-10C 的点电荷由A 点移到B 点,电场力做功4.8×10-8J ,再由B 点移到C 点,电荷克服电场力做功4.8×10-8J ,取B 点的电势为零,求A 、C 两点的电势及场强的方向.解析:把电荷从A 点移到B 点,由U AB =W ABq得,U AB =4.8×10-8-2×10-10 V =-240 V.即φA -φB =φA =-240 V.把电荷从B 点移到C 点,U BC =W BC q =-4.8×10-8-2×10-10 V =240 V.即φB -φC =-φC =240 V ,所以φC =-240 V.由于φA =φC ,所以A 、C 在同一个等势面上,根据场强方向垂直于等势面并且由高电势处指向低电势处,可得到该电场的场强方向垂直于AC ,指向左上方,如图所示.答案:φA =φC =-240 V 方向垂直于AC 连线指向左上方16.如图所示,充电后的平行板电容器水平放置,电容为C ,极板间距离为d ,上极板正中有一小孔,质量为m 、电荷量为+q 的小球从小孔正上方高h 处由静止开始下落,穿过小孔到达下极板处速度恰为零(空气阻力忽略不计,极板间电场可视为匀强电场,重力加速度为g ),求:(1)小球到达小孔处的速度;(2)极板间电场强度大小和电容器所带电荷量; (3)小球从开始下落运动到下极板处的时间.解析:(1)根据动能定理得,mgh =12mv 2,解得v =2gh .(2)在极板间带电小球受重力和电场力,有mg -qE =ma,0-v 2=2ah 得,E =mg h +dqd,U =Ed ,Q =CU 得Q =Cmg h +dq. (3)由h =12gt 21,0=v +at 2,t =t 1+t 2,综合可得,t =h +dh 2hg .答案:(1)2gh (2)mg h +d qd C mg h +d q (3)h +dh2hg17.如图所示,A 、B 两物块用一根轻绳跨过定滑轮相连,其中A 带负电,电荷量大小为q .A 静止于斜面的光滑部分(斜面倾角为37°,其上部分光滑,下部分粗糙且足够长,粗糙部分的摩擦系数为μ,上方有一个平行于斜面向下的匀强电场),轻绳拉直而无形变.不带电的B 、C 通过一根轻弹簧拴接在一起,且处于静止状态,弹簧劲度系数为k .B 、C 质量相等,均为m ,A 的质量为2m ,不计滑轮的质量和摩擦,重力加速度为g .(1)电场强度E 的大小为多少?(2)现突然将电场的方向改变180°,A 开始运动起来,当C 刚要离开地面时(此时 B 还没有运动到滑轮处,A 刚要滑上斜面的粗糙部分),请求出此时B 的速度大小;(3)若(2)问中A 刚要滑上斜面的粗糙部分时,绳子断了,电场恰好再次反向,请问A 再经多长时间停下来?解析:(1)分析物块A 的受力,受到重力、支持力和电场力作用,根据平衡条件得,qE =2mg sin37°,解得,E =2mg sin37°q =6mg 5q.(2)初态物块B 静止,弹簧处于压缩状态,压缩量为x ,由平衡条件得kx =mg ,末态当物块C 刚要离开地面时,弹簧处于伸长状态,伸长量为x ′,由平衡条件得kx ′=mg ,则物块B 上升2x ,物块A 沿斜面下降2x ,初末状态的弹性势能相等,物块A 、B 速度大小相等,根据动能定理得,-mg ·2x +qE ·2x +2mg ·2x sin37°=123mv 2-0,解得物块B 的速度大小v =2g 15105mk.(3)物块A 滑上斜面粗糙部分,做匀减速直线运动,列牛顿第二定律关系式,2mg sin37°-qE - 2μmg cos37°=2ma ,解得a =μg cos37°=45μg ,运动时间t =v a =16μ105mk.答案:(1)6mg 5q (2)2g15105m k (3)16μ105mk。

相关主题