机械故障诊断学习报告
小波分析
存在问题: 1)小波变换分析的结果不论基础进行判断。不 宜于使用计算机对结果进行自动分析和处理。 2)小波变换的核函数是不确定的。 需要根据工程应用中 的实际进行选择。
研究: 1:杨洁明、熊诗波,小波包分析方法在齿轮早期故障特 征提取中的应用。 2:G.Meltzer等应用极坐标的小波幅值映射对在非平稳转 速工况下的齿轮进行故障诊断. 3:于德介,Hilbert-Huang变换;王华民,高阶累积量具有 对高斯噪声和对称非高斯噪声不敏感的特性等。
5)齿面胶合 大功率软齿面或高速重载的齿轮传动,当润滑条件不良时 易产生齿面胶合(咬焊)破坏,即一齿面上的部分材料胶合到另一齿 面上而在此齿面上留下坑穴,在后续的啮合传动中,这部分胶合上的 多余材料很容易造成其他齿面的擦伤沟痕,形成恶性循环。
齿轮的主要故障
三:齿面疲劳(点蚀、剥落)
所谓齿面疲劳主要包括齿面点蚀与剥落。造成点蚀的原因,主要是 由于工作表面的交变应力引起的微观疲劳裂纹,润滑油进入裂纹后, 由于啮合过程可能先封闭入口然后挤压,微观疲劳裂纹内的润滑油在 高压下使裂纹扩展,结果小块金属从齿面上脱落,留下一个小坑,形 成点蚀。如果表面的疲劳裂纹扩展得较深、较远或一系列小坑由于坑 间材料失效而连接起来,造成大面积或大块金属脱落,这种现象则称 为剥落。剥落与严重点蚀只有程度上的区别而无本质上的不同。 实验表明,在闭式齿轮传动中, 点蚀是最普遍的破坏形式。在开式齿 轮传动中,由于润滑不够充分以及进 入污物的可能性增多,磨粒磨损总是 先于点蚀破坏。
7)时域表现为频率与有故障轴上相啮合的两对齿轮中较 大的啮合频率相等,一周内有正负各一次大的尖峰冲击振动 ,频域中啮合频率幅值明显增大。
典型故障特征
8)轴有较严重的不平衡时,在齿轮传动中将导致齿形误差, 形成以啮合频率及其倍频为载波频率,以齿轮所在轴转频为 调制频率的啮合频率调制现象,但一般谱图上边带数量少而 稀。但在谱图中其有故障轴的转频成分明显加大。 9)滚动轴承内外环及滚动体疲劳剥落和点蚀后,在其频谱 中高频区外环固有频率附近出现明显的调制峰群,产生以外 环固有频率为载波频率,以轴承通过频率为调制频率的固有 频率调制现象。
时域分析(最简单且最直接的方法)
几种故障的时域分析图
图3 摩擦故障时的时域波形
图4 冲击故障时的振动波形
图3 存在调制现象的时域波形
频域分析
机械振动的特征频率不仅是识别故障类型的主要依据,也 是识别故障部位的重要信息。
主要分析方法: 1)功率谱分析是现场诊断中应用最多的一种频谱分析方法 ,在理论和使用上都比较成熟,对齿轮大面积磨损、点蚀 等故障的诊断效果很好,而对局部故障敏感性较差; 2)细化谱分析可以提高频率分辨率,常常作为功率谱辅助 分析手段; 3)倒谱分析对识别齿轮故障的边频结构很有效,而且对于 齿轮信号的传递路径不敏感。
振动信号分析处理技术
振动诊断的实质是对采集的动态信号在三维图上的时域、 幅域和频域进行分析和随机数据处理,从而找出故障的原 因和部位。
振动信号分析处理技术
早期分析方法:傅立叶变换
缺点:计算量大,频率成分的分辨率不高、谱图有畸变、随机起伏明显 不光滑,不适于短数据
现在常用的分析方法:频谱分析、时域分析、频域分析、 小波分析等
时域分析(最简单且最直接的方法)
振动时域波形是一条时间历程的波动曲线。根据测量所用 传感器类型的不同,曲线的幅值可代表位移、速度或加速 度。 示性指标(特征量) 1)振动幅值,包括峰值、有效值和平均值等,其中峰值 又分为零峰值和峰—峰值; 2)振动周期与频率,不同的故障源通常会产生不同频率 的机械振动; 3)相位;主要用于比较不同振动运动之间的关系,或确 定一个部件相对于另一个部件的振动状况。
频谱分析
频谱分析是对动态信号在频率域内进行分析;分析的结果 是以频率为坐标的各种物理量的谱线和曲线,可得到各种 幅值以频率为变量的频谱函数。
可达到目的: 1) 求得动态信号中的各个频率分布范围; 2) 求出动态信号各个频率成分的幅值分布和能量分布,从 而得到主要幅度和能量分布的频率值,为结构分析和设计 提供依据; 3)通过对测试波形的分析,求得频率成分和它们的幅值, 来校正测试波形; 4)由频谱分析所提供的频率值、幅值、相位角和各种谱密 度,为研究动力过程的传递和衰减机理,求得被测结构的 传递函数、振型和结构动力反应的各种模态参数,为解决 消振、幅振等问题提供条件。
图5 齿轮均匀磨损时的频谱图
典型故障特征
3)箱体共振时,在谱图上出 现了箱体的固有频率成份, 一般情况下共振能量很大, 而其它频率成份则很小或 没有出现,频谱图如图6所 示。 4)断齿时域表现为幅值很大 的冲击型振动,频率等于有 断齿轴的转频。而频域上 在啮合频率及其高次谐波 附近出现间隔为断齿轴转 频的边频带;边频带一般数 量多、幅值较大、分布较 宽。时域图如图7所示。
图2 齿面点蚀
齿轮的主要故障
四.齿面塑性变形 软齿面齿轮传递载荷过大(或在大冲击载荷下)时, 易产生齿面塑性变形。在齿面间过大的摩擦力作用下,齿 面接触应力会超过材料的抗剪屈服极限,齿面材料进入塑 性状态,造成齿面金属的塑性流动,使主动轮节圆附近齿 面形成凹沟,从动轮节圆附近齿面形成凸棱,从而破坏了 正确的齿形。有时可在某些类型的齿轮的从动齿面上出现 “飞边”,严重时挤出的金属充满顶隙,引起剧烈振动, 甚至发生断裂。
小波分析
在振动信号分析中,小波变换属于一种多分辨率的时 频分析方法。实际应用中常使用简单方便的二进离散小波 变换。 从多分辨率分析的角度上看,小波分解相当于一个 带通滤波器和一个低通滤波器,每次分解总是把原信号分 解成两个子信号,分别称为逼近信号和细节信号,每个部 分还要经过一次隔点重采样。如此分解 N 次即可得到第N 层(尺度 N 上) 的小波分解结果。 作为一种全新的信号分析手段,在信号的特征提取方 面具有传统傅立叶分析无可比拟的优越性,这主要表现在 小波分析同时具有较好的时域特性和频域特性,能够聚焦 到信号的任何细节;小波分析时所加的窗是面积一定,长 宽可以改变的,信号的正交性分解是无冗余的,不存在能 量的泄漏,能适用于处理各种类型的信号,尤其对非平稳 振动信号分析显示了其卓越的性能,因此对于齿轮箱故障 这样的复杂信号,小波分析是比较合适的信号处理方法。
图6 箱体共振频谱图
图8 断齿时域波形
典型故障特征
5)轴轻度弯曲时,在齿轮传动中将导致齿形误差,形成以啮 合频率及其倍频为载波频率,以齿轮所在轴转频为调制频率 的啮合频率调制现象,如果弯曲轴上有多对齿轮啮合,则会 出现多对啮合频率调制。 6)轴严重弯曲时,时域有明显的冲击振动,以一定的时间间 隔出现,冲击持续了整个周期的1/3以上,当冲击能量很大 时激励起箱体的固有频率,振幅很大。
齿轮的主要故障
一:齿的断裂
齿轮副在啮合传递运动时,主动轮的作用 力和从动轮的反作用力都通过接触点分别作用 在对方轮齿上,最危险的情况是接触点某一瞬 间位于轮齿的齿顶部,此时轮齿如同一个悬臂 梁,受载后齿根处产生的弯曲应力为最大,若 因突然过载或冲击过载,很容易在齿根处产生 过负荷断裂。即使不存在冲击过载的受力工况 ,当轮齿重复受载后,由于应力集中现象,也 易产生疲劳裂纹,并逐步扩展,致使轮齿在齿 根处产生疲劳断裂。轮齿的断裂是齿轮的最严 重的故障,常因此造成设备停机。
图1 齿根部的应力集中
齿轮的主要故障
二:齿面磨损或划痕
1)粘着磨损 在低速、重载、高温、齿面粗糙度差、供油不足或油粘度 太低等情况下,油膜易被破坏而发生粘着磨损。润滑油的粘度高,有 利于防止粘着磨损的发生。 2)磨粒磨损与划痕 含有杂质颗粒以及在开式齿轮传动中的外来砂粒或 在摩擦过程中产生的金属磨屑,都可以产生磨粒磨损与划痕。 3)腐蚀磨损 由于润滑油中的一些化学物质如酸、碱或水等污染物与齿 面发生化学反应造成金属的腐蚀而导致齿面损伤。 4)烧伤 烧伤是由于过载、超速或不充分的润滑引起的过分摩擦所产生 的局部区域过热,这种温度升高足以引起变色和过时效,会使钢的几 微米厚表面层重新淬火,出现白层。损伤的表面容易产生疲劳裂纹。
诊断实例
图9 齿轮箱正常振动频谱图
图10 齿轮箱异常振动频谱图
结束语
近年来,小波分析、模态分析、粗糙集理论、群体智能 理论、生物免疫机理等理论方法在齿轮箱故障诊断中的应 用,为齿轮箱等机械设备故障诊断技术的提高和完善开辟了 广阔的前景.但也应看到某些新理论在齿轮箱故障诊断中的 应用,仍处于研究和摸索阶段,还存在这样那样的不足. 相信随着更多新技术、新方法的研究,故障诊断技术 一定能够到达一个更高的层次,为人类造福。
机械设备智能故障诊断的知识获取技术报告 ————齿轮箱的故障诊断
郝亚强 6100800544
齿轮箱的故障诊断
齿轮箱是用来改变转速和传递动力的常用机械设备,由 于齿轮箱本身工作环境恶劣,故容易受到损害和出现故障 ;而其中的零部件如齿轮、轴、轴承等加工工艺复杂,装 配精度要求高,又常常在高速度、重载荷下连续工作,故 障率较高,是诱发机器故障的重要原因。因此对齿轮箱进 行诊断是自故障诊断技术问世以来一直受到人们普遍重视 的课题之一。 齿轮箱状态监测与故障诊断技术是一门多学科综合技术 ,涉及动态信息处理、计算机、人工智能等众多领域的知 识。国内外对齿轮箱状态监测与故障诊断技术取得了一定 的成效,并不断将新理论应用于齿轮箱故障诊断之中,本 报告将就齿轮箱故障诊断技术的现阶段的研究方法及应用 进行讨论。最后介绍几个简单的实际用例。
典型故障特征
典型故障:齿形误差、齿轮均匀磨损、箱体共振、轴轻度 弯曲、断齿、轴不平衡、轴严重弯曲、轴向窜动、轴承疲 劳剥落和点蚀 相应故障特征: 1)齿形误差:振动能量和包络能量有一定程度的增大。
图4 齿形不好时的频谱图
典型故障特征
2)齿轮啮合频率及其谐波的幅值明显增大,阶数越高,幅值增大 的幅度越大;振动能量(包括有效值和峭度指标)有较大幅度的 增加。