当前位置:文档之家› 生物化学考试重点总结

生物化学考试重点总结

生化总结1。

蛋白质的pI:在某一pH溶液中,蛋白质解离为正离子和解离为负离子的过程和趋势相等,处于兼性离子状态,该溶液的pH值称蛋白质的pI。

2。

模体:在蛋白质分子中,二个或二个以上具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间现象,具有特殊的生物学功能。

3。

蛋白质的变性:在某些理化因素的作用下,蛋白质特定的空间构象被破坏,从而导致其理化性质的改变和生物学活性丧失的现象。

4。

试述蛋白质的二级结构及其结构特点。

(1)蛋白质的二级结构指蛋白质多肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。

主要包括,α-螺旋、β-折叠、β-转角、无规则卷曲四种类型,以氢键维持二级结构的稳定性。

(2)α-螺旋结构特点:a、单链、右手螺旋;b、氨基酸残基侧链位于螺旋的外侧;c、每一个螺旋由3.6个氨基酸残基组成,螺距0.54nm;d、每个残基的-NH和前面相隔三个残基的-CO之间形成氢键;e、氢键方向与螺距长轴平行,链内氢键是α-螺旋的主要因素。

(3)β-折叠结构特点:a、肽键平面充分伸展,折叠成锯齿状;b、氨基酸侧链交替位于锯齿状结构的上下方;c、维系依靠肽键间的氢键,氢键方向与肽链长轴垂直;d、肽键的N末端在同一侧---顺向平行,反之为反向平行。

(4)β-转角结构特点:a、肽链出现180转回折的“U”结构;b、通常由四个氨基酸残基构成,第二个氨基酸残基常为脯氨酸,由第1个氨基酸的C=O与第4个氨基酸残基的N-H形成氢键维持其稳定性。

(5)无规则卷曲:肽链中没有确定的结构。

5。

蛋白质的理化性质有:两性解离;蛋白质的胶体性质;蛋白质的变性;蛋白质的紫外吸收性质;蛋白质的显色反应。

6。

核小体(nucleosome):是真核生物染色质的基本组成单位,有DNA和5种组蛋白共同组成。

A、B、和共同构成了核小体的核心组蛋白,长度约150bp的DNA双链在组蛋白八聚体上盘绕1.75圈形成核小体的核心颗粒,核心颗粒之间通过组蛋白和DNA连接形成的串珠状结构称核小体。

7。

解链温度/融解温度(melting temperature,Tm):在DNA解链过程中,紫外吸光度的变化达到最大变化值的一半时所对应的温度称为DNA的解链温度,或称熔融温度(Tm值)。

8。

DNA变性(DNA denaturation):在某些理化因素(温度、pH、离子强度)的作用下,DNA双链间互补碱基对之间的氢键断裂,使双链DNA解离为单链,从而导致DNA理化性质改变和生物学活性丧失,称为DNA的变性作用。

9。

试述细胞内主要的RNA类型及其主要功能。

(1)核糖体RNA(rRNA),功能:是细胞内含量最多的RNA,它与核蛋白体蛋白共同构成核糖体,为mRNA,tRNA 及多种蛋白质因子提供相互结合的位点和相互作用的空间环境,是细胞合成蛋白质的场所。

(2)信使RNA(mRNA),功能:转录核内DNA遗传信息的碱基排列顺序,并携带至细胞质,指导蛋白质合成。

是蛋白质合成模板。

成熟mRNA的前体是核内不均一RNA(hnRNA),经剪切和编辑就成为mRNA。

(3)转运RNA(tRNA),功能:在蛋白质合成过程中作为各种氨基酸的载体,将氨基酸转呈给mRNA。

转运氨基酸。

(4)不均一核RNA(hnRNA),功能:成熟mRNA的前体。

(5)小核RNA(SnRNA),功能:参与hnRNA的剪接、转运。

(6)小核仁RNA(SnoRNA),功能:rRNA的加工和修饰。

(7)小胞质RNA(ScRNA/7Sh-RNA),功能:蛋白质内质网定位合成的信号识别体的组成成分。

10。

试述Watson-Crick的DNA双螺旋结构模型的要点。

(1)DNA是一反向平行、右手螺旋的双链结构。

两条链在空间上的走向呈反向平行,一条链的5’→3’方向从上向下,而另一条链的5’→3’是从下向上;脱氧核糖基和磷酸基骨架位于双链的外侧,碱基位于内侧,两条链的碱基之间以氢键相接触,A与T通过两个氢键配对,C与G通过三个氢键配对,碱基平面与中心轴相垂直。

(2)DNA是一右手螺旋结构。

螺旋每旋转一周包含了10.5碱基对,每个碱基的旋转角度为36。

DNA双螺旋结构的直径为2.37nm,螺距为3.54nm,每个碱基平面之间的距离为0.34nm。

DNA双螺旋分子存在一个大沟和小沟。

(3)DNA双螺旋结构稳定的维系横向靠两条链之间互补碱基的氢键,纵向则靠碱基平面间的碱基堆积力维持。

11。

酶的活性中心:酶分子的必需基团在一级结构上可能相距很远,但在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异地结合并将底物转化为产物,这一区域称为酶的活性中心。

12。

同工酶:是指催化相同的化学反应,而酶的分子结构、理化性质乃至免疫学性质不同的一组酶。

13。

何为酶的Km值?简述Km和Vm意义。

酶的Km值是酶的特征性常数,是指当酶促反应速度达到最大反应速度一半时的底物浓度。

其只与酶的结构、底物和反应条件有关,与酶的浓度无关。

可近似表示酶与底物的亲和力。

Vmax是酶完全被底物饱和时的反应速率,与酶的浓度成正比,可用于计算酶的转换数。

14。

何为酶的竞争性抑制作用?有何特点?试举例说明之。

1)有些抑制剂与酶的底物结构相似,可与底物竞争酶的活性中心,从而阻碍酶与底物结合形成中间产物。

这种抑制作用称为竞争性抑制作用。

2)有两个特点,一是抑制剂以非共价键与酶呈可逆性结合,可用透析或超滤的方式除去,二是抑制程度取决于抑制剂与酶的相对亲和力和底物浓度的比例,加大底物浓度可减轻抑制作用。

3)典型例子是丙二酸对琥珀酸脱氢酶的抑制作用。

15。

比较三种可逆性抑制作用的特点。

(1)竞争性抑制:抑制剂的结构与底物结构相似,共同竞争酶的活性中心。

抑制作用的大小与抑制剂与底物的浓度以及酶对它们的亲和力有关。

Km值升高,Vm不变。

(2)非竞争性抑制:抑制剂的结构与底物结构不相似或不同,只与酶活性中心外的必需基因结合。

不影响酶与底物的结合。

抑制作用的强弱只与抑制剂的浓度有关。

Km值不变,Vm下降。

(3)反竞争性抑制:抑制剂只与酶-底物复合物结合,生成的三元复合物不能解离为产物。

Km,Vm均下降。

16。

Pasteur effect:糖的有氧氧化抑制生物发酵(糖酵解)的现象称为Pasteur effect(巴斯德效应)。

17。

三羧酸循环:又称柠檬酸循环或Krebs循环,是一个由一系列酶促反应构成的循环反应系统。

是指在线粒体内,乙酰CoA首先与草酰乙酸缩合生成柠檬酸,经过4次脱氢,2次脱羧,生成4分子还原当量和2分子,重新生成草酰乙酸的循环反应过程。

18。

底物水平磷酸化:能量物质体内分解代谢时,脱氢氧化或脱水反应使代谢分子内部能量重新分布生成高能化合物,直接将能量转移给ADP(GDP)生成A TP(GTP)的反应,这种底物水平的反应与ADP的磷酸化偶联生成ATP 的方式为底物水平磷酸化。

19。

简述糖酵解的生理意义。

(1)迅速供能(2)某些组织细胞无线粒体,完全依赖糖酵解供能,如成熟红细胞等。

(3)神经细胞、白细胞、骨髓细胞等代谢极为活跃,即使不缺氧也常由糖酵解提供部分能量。

21。

试述磷酸戊糖途径的生理意义。

(1)是机体生成NADPH的主要代谢途径:NADPH在体内可用于:①作为供氢体,参与体内代谢:如参与合成脂肪酸、胆固醇等。

②参与羟化反应:作为加单氧酶的辅酶,参与对代谢物的羟化。

③维持谷胱甘肽的还原状态,还原型谷胱甘肽可保护含-SH的蛋白质或酶免遭氧化,维持红细胞膜的完整性,由于6-磷酸葡萄糖脱氢酶遗传性缺陷可导致蚕豆病,表现为溶血性贫血。

(2)是体内生成5-磷酸核糖的主要途径:体内合成核苷酸和核酸所需的核糖或脱氧核糖均以5-磷酸葡萄糖的形式提供,其生成方式可以由G-6-P脱氢脱羧生成,也可以由3-磷酸甘油醛和F-6-P经基团转移的逆反应生成。

22。

简述血糖的来源和去路。

血糖的来源:①食物经消化吸收的葡萄糖;②肝糖原分解;③糖异生血糖的去路:①糖酵解或有氧氧化产生能量;②合成糖原;③转变为脂肪及某些非必需氨基酸;④进入磷酸戊糖途径等转变为其它非糖类物质。

23。

简述6-磷酸葡萄糖的代谢途径及其在糖代谢中的重要作用。

(1)6-磷酸葡糖糖的来源:①已糖激酶或葡萄糖激酶催化葡萄糖磷酸化生成6-磷酸葡萄糖。

②糖原分解产生的1-磷酸葡萄糖转变为6-磷酸葡萄糖。

③非糖物质经糖异生由6-磷酸果糖异构为6-磷酸葡萄糖。

(2)6-磷酸葡萄糖的去路:①经糖酵解生成乳酸。

②经糖的有氧氧化彻底氧化生成、和ATP。

③通过变位酶催化生成1-磷酸葡萄糖,合成糖原。

④在6-磷酸葡萄糖脱氢酶催化下进入磷酸戊糖途径。

由上可知,6-磷酸葡萄糖是糖代谢各个代谢途径的交叉点,是各种代谢途径的共同产物,如已糖激酶或变位酶的活性降低,可使6-磷酸葡萄糖的生成减少,上述各代谢途径不能顺利进行。

因此,6-磷酸葡萄糖的代谢方向取决于各条代谢途径中相关酶的活性大小。

24。

脂肪动员:是指储存在脂肪细胞中的甘油三脂,被脂肪酶逐步水解为游离脂酸和甘油并释放入血,通过血液运输至其他组织氧化利用的过程。

25。

脂酸的β-氧化:指脂肪酸活化为脂酰CoA,脂酰CoA进入线粒体基质后,在脂肪酸β-氧化多酶复合体催化下,依次进行脱氢、加水、再脱氢和硫解四步连续反应,释放出一分子乙酰CoA和一分子比原来少两个碳原子的脂酰CoA。

由于反应均在脂酰CoA的α碳原子与β碳原子之间进行,最后β碳原子被氧化为酰基,所以称为~26。

酮体:指脂肪酸在肝分解氧化时产生的乙酰CoA可在肝组织中生成的特有物质,包括乙酰乙酸、β-羟丁酸和丙酮三种。

272829。

乙酰CoA可进入以下代谢途径:①进入三羧酸循环氧化分解为和O,产生大量能量。

②以乙酰CoA为原料合成脂肪酸,进一步合成脂肪和磷脂等。

③以乙酰CoA为原料合成酮体作为肝输出能源方式。

④以乙酰CoA为原料合成胆固醇。

30。

氧化磷酸化:指代谢物脱下的氢,经呼吸链传递给氧化成,并偶联ADP磷酸化生成ATP的过程。

31。

P/O比值:在氧化磷酸化过程中,每消耗1/2摩尔所生成ATP的摩尔数为P/O比值。

32。

递氢体和递电子体:在呼吸链中,能传递氢的酶或辅酶称为递氢体,能传递电子的称为递电子体。

(注:由于氢原子中含有电子,递氢体也必然递电子,所以呼吸链又常称为电子传递链)。

33。

简述人线粒体氧化呼吸链的组成、排列顺序以及氧化磷酸化的偶联部位。

线粒体内的氧化呼吸链有两条,NADH氧化呼吸链和FAD氧化呼吸链,其组成和排列顺序分别为:NADH→复合体I→CoQ→复合体III→Cytc→复合体IV→;琥珀酸→复合体II→CoQ→复合体III→Cytc→复合体IV→。

两条呼吸链在泛醌处交汇,第一条呼吸链有三个氧化磷酸化偶联部位,第二条呼吸链有两个氧化磷酸化偶联部位;分别是:复合体(NADH→CoQ)、复合体III(CoQ→Cytc)、复合体IV(Cytc→a→)。

相关主题