当前位置:文档之家› 单片机复位原理总结

单片机复位原理总结

题6是作者在2006年10月份全国巡回人才招聘的考题,居然60%的同学得零分,却只有一位同学得满分,这种现象值得我们彻底地反思。

题6:单片机上电复位电路如图3所示,请回答下列问题(12分):
(1)该复位电路适用于高电平复位还是低电平复位?
(2)试述复位原理,画出上电时Vc的波形;
(3)试述二极管D的作用。

图3RC复位电路
答案:(1)低电平复位。

(2)在图3中,CPU上电时,但由于电容C两端的电压V C不能突变,因此V C保持低
不断上升,上升曲线如图4所示。

只要选择合适电平。

但随着电容C的充电,V
C
就可以在CPU复位电压以下持续足够的时间使CPU复位。

复位之后,的R和C,V
C
V
上升至电源电压,CPU开始正常工作。

相当于在CPU上电时,自动产生了一个C
一定宽度的低电平脉冲信号,使CPU复位。

4 RC充放电曲线

(3)当电源电压消失时,二极管D为电容C提供一个迅速放电的回路,使/RESET端迅速回零,以便下次上电时CPU能可靠复位。

这是一个非常重要的知识点,如果CPU的复位电路设计得不合理将会导致CPU严重死机,并且影响与CPU有关的外围器件的稳定性,比如存储器上电丢失数据。

因此我们在学习的过程中,一定要善于将前后的知识连贯起来。

千万不要随意放过哪怕一个细小的问题,只有这样才能做到融会贯通。

在管理新产品的开发过程中,作者发现出现质量事故的产品都是由一些看起来并不起眼的小问题所引起的,最终给企业带来的损失却是巨大的,甚至是毁灭性的打
击。

二、复位电路的工作原理
在书本上有介绍,51单片机要复位只需要在第9引脚接个高电平持续2US就可以实现,那这个过程是如何实现的呢?
在单片机系统中,系统上电启动的时候复位一次,当按键按下的时候系统再次复位,如果释放后再按下,系统还会复位。

所以可以通过按键的断开和闭合在运行的系统中控制其复位。

开机的时候为什么为复位
在电路图中,电容的的大小是10uF,电阻的大小是10k。

所以根据公式,可以算出电容充电到电源电压的0.7倍(单片机的电源是5V,所以充电到0.7倍即为3.5V),需要的时间是10K*10UF=0.1S。

也就是说在电脑启动的0.1S内,电容两端的电压时在0~3.5V增加。

这个时候10K电阻两端的电压为从5~1.5V减少(串联电路各处电压之和为总电压)。

所以在0.1S内,RST引脚所接收到的电压是5V~1.5V。

在5V正常工作的51单片机中小于1.5V的电压信号为低电平信号,而大于1.5V的电压信号为高电平信号。

所以在开机0.1S内,单片机系统自动复位(RST引脚接收到的高电平信号时间为0.1S左右)。

按键按下的时候为什么会复位
在单片机启动0.1S后,电容C两端的电压持续充电为5V,这是时候10K电阻两端的电压接近于0V,RST处于低电平所以系统正常工作。

当按键按下的时候,开关导通,这个时候电容两端形成了一个回路,电容被短路,所以在按键按下的这个过程中,电容开始释放之前充的电量。

随着时间的推移,电容的电压在0.1S内,从5V释放到变为了1.5V,甚至更小。

根据串联电路电压为各处之和,这个时候10K电阻两端的电压为3.5V,甚至更大,所以RST引脚又接收到高电平。

单片机系统自动复位。

总结:
1、复位电路的原理是单片机RST引脚接收到2US以上的电平信号,只要保证电容的充放电时间大于2US,即可实现复位,所以电路中的电容值是可以改变的。

2、按键按下系统复位,是电容处于一个短路电路中,释放了所有的电能,电阻两端的电压增加引起的。

相关主题