当前位置:
文档之家› 压铸工艺及模具设计:第4章 压铸件结构设计及压铸工艺
压铸工艺及模具设计:第4章 压铸件结构设计及压铸工艺
2)对非配合的孔,为了 避免采用抽芯C的方 法(见右图),可采用 底部通槽,侧面增 加幅板B连接成构架 形。
(二)改进模具结构,减少抽芯部位
• 下图中a所示压铸件,中心方孔深度深,抽芯距离长, 需设专用抽芯机构,模具复杂;加上悬臂式型芯伸入型 腔,易变形,难以控制侧壁壁厚均匀。而采用下图中b 所示的H形断面结构就不需抽芯,简化了模具结构。
(一)从简化模具结构、延长模具使用寿命考虑
• 铸件的分型面上应尽量避免圆角; 如果将结构改为如图4-1b所示的结构,则分型面平整, 加工简便,避免了上述缺点。
(一)从简化模具结构、延长模具使用寿命考虑
• 避免模具局部过薄;
如下图a所示的压铸件,因孔边离凸缘距离过小,易使模 具镶块在a处断裂。若将压铸件改为如下图b所示的 a≥3mm的结构,则使镶快具有足够的强度,延长了模具 的使用寿命。
(三)方便压铸件脱模和抽芯
• 下图中a所示压铸件,因K处的的型芯受凸台阻碍,无法 抽芯。若将压铸件的形状作一定的修改,变为下图中b 所示的结构,K处的的型芯即可顺利抽出。
二、压铸件基本结构的设计
1.壁厚 压铸件设计的特点之一是壁厚设计。 ◆厚壁: 厚壁会使压铸件的力学性能明显下降,下图表示出锌合 金、铝合金、镁合金的强度增减百分比与铸件壁厚的关 系。
二、压铸件基本结构的设计
1.壁厚及肋
二、压铸件基本结构的设计
• 对于大面积的平板类厚 壁铸件,设置筋以减少 壁厚。下图为设置筋以 减少壁厚的示例。
• 改进铸件上壁 过厚的部位的 示例
• 肋的作用是: • 壁厚改薄后,用以提高零件的强度和刚性,防止或减少 铸件收缩变形,避免工件从模型内顶出时发生变形,填 充时用以作辅助回路(金属流动的通路)。 • 肋的厚度应小于所在壁的厚度,一般取该处壁的厚度的 2/3~3/4。
二、压铸件基本结构的设计
• 压铸件随壁厚的增加,其内部气孔、缩孔等缺陷增加, 故在保证铸件有足够强度和刚度的前提下,应尽量减小 厚度并保持截面的厚薄均匀一致。为了避免缩松等缺陷, 对铸件的厚壁处应减厚,增加加强筋。
二、压铸件基本结构的设计
◆薄壁: 薄壁铸件致密性好,相对提高了铸件强度及耐压性。 但壁不能太薄,太薄使合金熔接不好,易产生缺陷,并 给工艺带来困难。还会会发生填充不良,成形困难。不 同壁厚的铝合金压铸件的密度和强度见下表。
4)外形适当加大,保护内部尺寸和形状(见图d)。
5)内部形状改成便于脱型,外部加凹窝,使壁厚趋于均匀 (见下图e)。
• 避免内侧凹
下图a所示的压铸件内法兰 和轴承孔改为内侧凹,抽芯 困难,或需设置复杂的抽芯 机构,或需设置可溶型芯, 这既增加了模具的加工量, 有降低了生产率。若将压铸 件改为图b所示结构,既可 简化模具,又克服了图a所 示压铸件带来的缺点。
二、压铸件基本结构的设计
• 压铸件壁的厚度(壁厚),是压铸工艺中一个具有特殊意 义的因素。壁厚与整个工艺规范有着密切关系,如:填 充时间的计算、内浇口速度的选择、凝固时间的计算、 模型温度梯度的分析、压力(最终比压)的作用、留型时 间的长短、铸件顶出温度的高低及操作效率。 • 压铸件壁厚的极限范围: 压铸件壁厚的极限范围很难加以限制。通常可按铸件 各个壁厚表面积的总和来选择适宜的壁厚。在零件的工 艺性能好以及压铸生产中又具备良好的工艺条件时,还 可以压铸出更薄的壁。 这时,锌合金铸件最小壁厚度为0.5mm,铝合金铸件 最小厚度为0.7mm,镁合金铸件最小厚度为0.8mm,铜合 金铸件最小厚度为1mm。
(二)改进模具结构,减少抽芯部位
• 减少不与分型面垂直的抽芯部位,可以降低模具的复杂 程度,容易保证压铸件的精度。
避免或减少抽芯部位主要注意以下两个问题: 1)当斜度较小时,侧孔采用抽芯的方法。当斜度加大后, 侧孔端与能够在动型与定型的形成部分构成,侧孔便可 以不用抽芯方法也能压铸出。
(二)改进模具结构,减少抽芯部位
• 肋的设置原则:
(一)从简化模具结构、延长模具使用寿命考虑
• 避免压铸件上互相交叉的不通孔; • 1)又如下图所示,左图为抽芯C的型芯与型芯G交叉,右 图将型芯G分为相对的两部分,在抽芯C的轴线处结合, 避免了型芯交叉。
避免压铸件上互相交叉的不通孔
• 2)抽、拔的型芯C1和C2交叉,可将C2半圆部分改由C1构 成,避免C1插到C2内,零件左端的端部形状亦做相应更 新(见下图b)。
• 压铸件的结构设计直接影响压铸模的结构设计和制造的难易程度、 生产率和模具的使用寿命等。
(一)从简化模具结构、延长模具使用寿命考虑
• 铸件的分型面上应尽量避免圆角; 如图4-1a中的圆角不仅增加了模具的加工难度,而且使圆 角处的模具强度和寿命有所下降。若动模与定模稍有错位, 压铸圆角部分易形成台阶,影响外观
避免压铸件上互相交叉的不通孔
• 3)将型芯B分为两部分,从两侧抽出(见下图c)。
(一)从简化模具结构、延长模具使用寿命考虑
• 避免内侧凹 针对要求采取的措施有: 1)外形不加大,内部形状凸出至底部(见下图a)。
2)局部加厚,内形加至底部,外形加至分型面处,从而消 除侧凹(见下图b) 。
3)原凸台形状不改变,在零件底部开出通孔,模型成型镶 件可以从通孔处插入形成台阶(见下图c)。
(一)从简化模具结构、延长模具使用寿命考虑
• 避免压铸件上互相交叉的不通孔;
交叉的盲孔必须使用公差配合较高的互相交叉的型芯 (如图4-3a),这既增加了模具的加工的量,又要求严 格控制抽芯的次序。一金属液窜入型芯交叉的间隙中, 便会使抽芯发生困难。若将交叉的盲孔改为图中b所示 的结构,即可避免型芯的交叉,消除了上述的缺点。
第四章 压铸件结构设计(P15)及压铸工艺(P30)
§1. 压铸件结构设计
• 一、压铸工艺对压铸件结构的要求 • 压铸件结构设计的工艺性能是一个十分重要的因素,其结构的合理 性和工艺适应性决定了后序工作能否顺利进行。如分型面的选择,
浇道的设计,推出机构的布置,收缩规律的掌握、精度的保证,缺 陷的种类等都与压铸件本身的压铸工艺性的优劣相关。