生物芯片技术——生物化学分析论文08应化2江小乔温雪燕袁伟豪张若琦2011-5-3一、摘要:生物芯片技术,被喻为21世纪生命科学的支撑技术,是便携式生化分析仪器的技术核心,是90年代中期以来影响最深远的重大科技进展之一,是融微电子学、生物学、物理学、化学、计算机科学为一体的高度交叉的新技术,具有重大的基础研究价值,又具有明显的产业化前景。
由于用该技术可以将极其大量的探针同时固定于支持物上,所以一次可以对大量的生物分子进行检测分析,从而解决了传统核酸印迹杂交(Southern Blotting 和Northern Blotting 等)技术复杂、自动化程度低、检测目的分子数量少、低通量(low through-put)等不足。
二、关键词生物芯片;检测;基因三、正文(一)、生物芯片的简介生物芯片技术是一种高通量检测技术,通过设计不同的探针阵列、使用特定的分析方法可使该技术具有多种不同的应用价值,如基因表达谱测定、突变检测、多态性分析、基因组文库作图及杂交测序(Sequencing by hybridization, SBH)等,为"后基因组计划"时期基因功能的研究及现代医学科学及医学诊断学的发展提供了强有力的工具,将会使新基因的发现、基因诊断、药物筛选、给药个性化等方面取得重大突破,为整个人类社会带来深刻广泛的变革。
该技术被评为1998年度世界十大科技进展之一。
(1)它包括基因芯片、蛋白芯片及芯片实验室三大领域。
基因芯片(Genechip)又称DNA芯片(DNAChip)。
它是在基因探针的基础上研制出的,所谓基因探针只是一段人工合成的碱基序列,在探针上连接一些可检测的物质,根据碱基互补的原理,利用基因探针到基因混合物中识别特定基因。
它将大量探针分子固定于支持物上,然后与标记的样品进行杂交,通过检测杂交信号的强度及分布来进行分析。
蛋白质芯片与基因芯片的基本原理相同,但它利用的不是碱基配对而是抗体与抗原结合的特异性即免疫反应来检测。
蛋白质芯片构建的简化模型为:选择一种固相载体能够牢固地结合蛋白质分子(抗原或抗体),这样形成蛋白质的微阵列,即蛋白质芯片。
芯片实验室为高度集成化的集样品制备、基因扩增、核酸标记及检测为一体的便携式生物分析系统,它最终的目的是实现生化分析全过程全部集成在一片芯片上完成,从而使现有的许多烦琐、费时、不连续、不精确和难以重复的生物分析过程自动化、连续化和微缩化,属未来生物芯片的发展方向。
(2)(二)、生物芯片的制作对于一些实验室来说,如果现成的商品化芯片不能满足研究需要,而自行设计向厂家定做芯片也不能满足时间的需要时,就需要自制芯片。
要成功的制作芯片,需要准备3大材料:准备固定在芯片上的生物分子样品、芯片片基和的制作芯片的仪器。
研究目的不同,期望制作的芯片类型不同,制备芯片方法也不尽相同,以DNA芯片为例,基本上可分为两大类:一类是原位合成(即在支持物表面原位合成寡核苷酸探针),适用于寡核苷酸;一类是预合成后直接点样多用于大片段DNA,有时也用于寡核苷酸,甚至mRNA。
原位合成有两种途径,一是原位光刻合成,该方法的主要优点是可以用很少的步骤合成极其大量的探针阵列。
某一含N个核苷酸的寡聚核苷酸,通过4×N 个化学步骤能合成出4N个可能结构。
例如合成想要8核苷酸探针,通过32个化学步骤,8个小时可合成65,536个探针。
而如果用传统方法合成然后点样,那么工作量的巨大将是不可思议的。
同时,用该方法合成的探针阵列密度可高达到106/cm2。
另一种原位合成是压电打印法(Piezoelectric printing)。
原理与普通的彩色喷墨打印机相似,所用技术也是常规的固相合成方法。
不过芯片喷印头和墨盒有多个,墨盒中装的是四种碱基合成试剂。
喷印头可在整个芯片上移动。
支持物经过包被后,根据芯片上不同位点探针的序列需要将特定的碱基喷印在芯片上特定位置。
冲洗、去保护、偶联等则同于一般的固相合成技术。
该技术采用的化学原理与传统的DNA固相合成一致,因此不需要特殊制定备的化学试剂。
每步产率可达到99%以上,可以合成出长度为40到50个碱基的探针。
尽管如此,原位合成方法仍然比较复杂,除了在基因芯片研究方面享有盛誉的Affymetrix等公司使用该技术合成探针外,其它中小型公司大多使用合成点样法。
点样法是将预先通过液相化学合成好的探针,或PCR技术扩增cDNA或基因组DNA经纯化、定量分析后,通过由阵列复制器(arraying and replicating device ARD)或阵列点样机(arrayer)及电脑控制的机器人,准确、快速地将不同探针样品定量点样于带正电荷的尼龙膜或硅片等相应位置上(支持物应事先进行特定处理,例如包被以带正电荷的多聚赖酸或氨基硅烷),再由紫外线交联固定后即得到DNA微阵列或芯片。
如下图所示。
点样的方式分两种,其一为接触式点样,即点样针直接与固相支持物表面接触,将DNA样品留在固相支持物上;其二为非接触式点样,即喷点,它是以压电原理将DNA样品通过毛细管直接喷至固相支持物表面。
打印法的优点是探针密度高,通常1平方厘米可打印2,500个探针;缺点是定量准确性及重现性不好,打印针易堵塞且使用寿命有限。
喷印法的优点是定量准确,重现性好,使用寿命长;缺点是喷印的斑点大,因此探针密度低,通常只有1平方厘米400点。
点样机器人有一套计算机控制三维移动装置、多个打印/喷印头、一个减震底座,上面可放内盛探针的多孔板和多个芯片。
根据需要还可以有温度和湿度控制装置、针洗涤装置。
打印/喷印针将探针从多孔板取出直接打印或喷印于芯片上。
检验点样仪是否优秀的指标包括点样精度、点样速度、一次点样的芯片容量、样点的均一性、样品是否有交叉污染及设备操作的灵活性、简便性等等。
(3)生物分析芯片按功能微结构在载体上分布的不同又可以分为二维分析芯片和三维分析芯片。
二维分析芯片依赖固定在载体表面的生物分子完成生化反应检测。
最常见的二维芯片是二维阵列芯片(Microarray),包括基因芯片、蛋白芯片和其它微阵列芯片。
基因芯片是目前发展最为成熟的生物芯片,通过表面上固定的高密度DNA探针(现在单片基因芯片上的探针总数已达数十万个)与待测溶液中互补DNA片断的杂交反应来识别未知样品。
根据用途的不同,基因芯片又可以分为测序芯片,表达芯片等等。
三维芯片又称芯片实验室(1ab On a chip,LOAC),是在载体内部加工微通道、样品池、反应仓、以及各种控制和检测元件的具有一定空间结构的微芯片。
三维芯片种类比较多,常见的有微电泳芯片、三维阵列芯片、PCR芯片等等。
二维芯片相对比较简单,容易加工,检测技术也比较成熟,现在已经逐步产业化。
三维芯片相对比较复杂,还主要处于研究阶段。
但是由于二维芯片通常需要体积庞大的辅助检测工具,因而在芯片上可以整合控制和检测结构的三维芯片相对更有发展的空间。
最完整的芯片实验室可以完成样本的预处理、分离、稀释、混合、化学反应、检测以及产品的提取,它们也可以称为微全分析系统(μ-TAS)。
与传统的生物分析工具相比,生物芯片可以在载体表面集成成千上万的分子探针,在单一芯片中完成从样本的预处理、分离、稀释、混合、化学反应、检测到产物提取的全过程。
因而生物芯片可以大大提高检测速度和分析效率、减少样本试剂消耗、排除人为干扰、防止污染以及高度自动化。
1.二维芯片的制作二维芯片制作是在载体表面固定上生物分子阵列。
常用的载体是玻璃,也可以使用硅、塑料或者薄膜。
以二维DNA芯片的制作方法为例,通常DNA的固定方法有原位合成和微量点样两种。
原位合成主要是光引导寡核苷酸合成技术,是照相平板印刷术与传统的核酸固相合成技术相结合的产物,在经过处理的玻璃载片表面定点合成寡核苷酸链。
1991年,Fodor等首先利用光引导寡核苷酸合成技术在固相表面上原位合成了高密度寡核苷酸阵列。
这一方法的要点是首先在玻璃载片表面修饰光敏保护基团(X),然后通过掩膜使要反应部位受光产生活化的羟基。
加入3’端活化,5’端用(X)基团保护的脱氧核苷酸,在光照条件下与表面的活化基团反应。
清洗反应后的表面,利用第二个掩膜重复以上的过程,在不同的光照区域完成合成反应。
不断进行这样的光去保护和偶联反应循环,利用不同的掩膜得到设计的寡核苷酸阵列。
由于利用了照相平板印刷术这一精密的光学方法,该方法合成的探针阵列密度极高,分辨率可达10微米。
原位合成方法借鉴半导体芯片制作中的光刻方法,合成具有并行性和高效性,可以设计每个点的DNA序列,点密度较高。
缺点是工艺复杂,需要较多的掩膜,DNA的长度比较短,合成成本高,合成时间长,对设备要求高,较难推广。
微量点样是利用点样仪把制备好的cDNA片段喷射或者迅速接触滴加到衍生处理的玻璃载片表面。
与原位合成法的思路相反,微量点样方法是先合成探针分子,然后用高速阵列点样仪点样,形成微阵列。
该方法虽然产生的分子阵列密度没有光导原位合成法高,但它不仅可固定小片段核酸,还可固定长达500—5000个碱基的基因片段,甚至蛋白质等其它生物材料,因而用途更加广泛。
微量点样的方式还可分为接触滴加和非接触式喷射两种。
接触滴加利用针头阵列在预先设定的样品阵列中蘸取样品,然后转移到芯片表面,与之接触后使DNA 样品吸附和固定。
喷射方法在把吸入点样针管中的样品喷印到芯片表面。
相对来说,接触点样方法比较简单,成本也低。
喷射的优点是对精细表面无损伤且分配机制与片基表面性质无关。
制作工艺如下图所示。
2.三维芯片的制作相对而言,由于三维芯片的种类比较多,使用的材料和制作工艺也各有不同。
在三维芯片制作中最常用的是光刻和化学蚀刻联用的方法。
这种方法常用于硅、石英和玻璃等质地比较坚硬,韧性差的无机材料的加工中。
这种方法的主要过程是先在清洗干净或者表面处理过的玻璃等基底材料表面离心覆盖一层光刻胶,紫外光透过接触掩膜照射光刻胶进行曝光,接着用有机溶剂处理去掉曝光过的光刻胶,化学蚀刻去掉一定深度的无光刻胶保护的基底材料产生所需要的各种三维结构。
其优点是加工精度很高,可以得到微米水平的微结构。
但是缺点也相当明显,就是工艺比较复杂,设备要求很高,制作效率低,成本高。
另一种常用的三维芯片加工方法是软印刷术,它是一大类,包括所有的用于微结构成型的非蚀刻技术,这类方法广泛用于聚合材料的三维芯片制作中。
其中比较常用的是印刻法和微接触印制法。
两种方法的原理正好相反,印刻法是使被加工材料凹陷形成所要求的结构,而印制法是在基底材料表面结合上凸出的结构而达到设计要求。
早期印刻法使用小直径的金属丝在低温加热变软的塑料上压制成型。
通过这种方法得到的产品只限于简单的线性通道设计,但是造价低廉。
发展后的印刻法可以产生更复杂的微通道阵列,它先在硅片上蚀刻出微通道的凸版三维结构,然后在塑料上印制得到设计的微通道结构,模板可以多次重复使用。