当前位置:文档之家› 基于FPGA的HDLC协议设计

基于FPGA的HDLC协议设计

HDLC协议控制器的设计

目录 内容摘要 (1) 关键词 (1) Abstract (1) Key Words (1) 1.绪论……………………………………………………………………2 1.1研究的意义 (2) 1.2本设计的主要功能………………………………………………2 2.HDLC协议综述 (3) 2.1 HDLC协议的产生背景 (3) 2.2 HDLC协议的帧结构 (4) 2.3 HDLC协议的规程分析 (7) 3.HDLC协议控制器的设计………………………………………………8 3.1 HDLC协议控制器设计方案选择…………………………………8 3.2 FPGA的设计原则 (9) 3.3 HDLC协议控制器总框架………………………………………10 3.4 HDLC帧发送器的设计 (11) 3.5 HDLC帧接收器的设计 (1) 5 参考文献…………………………………………………………………18 致谢 (19) [说明:在本页中,“目录”二字居中,宋体小二号,加黑, 其它统一由宋体小四号,不加黑排版打印、行间距为1.5]

内容摘要:HDLC(高级数据链路控制)协议是一种面向比特的链路控制规程,广泛的用作数据链路层的控制协议。论文在分析和研究HDLC协议的基础上,提出了一种基于FPGA(现场可编程门阵列)的HDLC协议控制器的设计。对HDLC协议控制器的功能进行划分,分别设计了标志位的检测和生成、插零和删零、FCS的校验等控制模块。 采用VHDL硬件描述语言在FPGA内部实现HDLC协议的各功能模块,本设计使用QuartusII 9.1平台实现代码编写、综合、编译、仿真。对HDLC链路控制规程功能,帧控制和FCS校验功能进行了仿真实现。 关键词:HDLC;FPGA;帧收发器; Abstract:(宋体,小四号,加黑)××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××。(宋体,小四号,不加黑) Key words:(宋体,小四号,加黑)×××□□×××□□×××□□(宋体,小四号,不加黑)

基于FPGA的多功能数据选择器设计与实现

基于FPGA的多功能数据选择器设计与实现 章军海201022020671 [摘要]传统的数字系统设计采用搭积木式的方法来进行设计,缺乏设计的灵活性。随着可编程逻辑器件(PLD)的出现,传统设计的缺点得以弥补,基于PLD的数字系统设计具有很好的灵活性,便于电路系统的修改与调试。本文采用自顶向下的层次化设计思想,基于FPGA设计了一种多功能数据选择器,实现了逻辑单元可编程、I/O单元可编程和连线可编程功能,并给出了本设计各个层次的原理图和仿真时序图;本文还基于一定的假设,对本设计的速度和资源占用的性能进行了优化。 [关键词]层次化设计;EDA;自顶向下;最大时延 0引言: 在现代数字系统的设计中,EDA(电子设计自动化)技术已经成为一种普遍的工具。基于EDA技术的设计中,通常有两种设计思想,一种是自顶向下的设计思想,一种是自底向上的设计思想[1]。其中,自顶向下的设计采用层次化设计思想,更加符合人们的思维习惯,也容易使设计者对复杂系统进行合理的划分与不断的优化,因此是目前设计思想的主流。基于层次化设计思想,实现逻辑单元、I/O单元和连线可编程可以提高资源的利用效率,并且可以简化数字系统的调试过程,便于复杂数字系统的设计[2][3]。 1系统原理图构架设计 1.1系统整体设计原理 本设计用于实现数据选择器和数据分配器及其复用的I/O端口和连线的可编程却换,提高系统的资源利用效率。系统顶层原理框图如图1所示,系统拥有两个地址选择端口a0、a1,一个功能选择端口ctr,还有五路I/O复用端口。其中,地址选择端口用于决定数据选择器的数据输入端和数据分配器的数据输出端;功能选择端口用于切换数据选择器和数据分配器,以及相应的I/O端口和连线;I/O复用端口数据的输入和输出,其功能表如表一所示。 图1顶层模块原理图 表一顶层系统功能表

基于FPGA的脉冲发生器的设计

【基础?应用】 基于FP GA 的脉冲发生器的设计 ① 张 涛 (北方交通大学电子信息工程学院,北京100044)【摘 要】 以脉冲发生器为研究对象,介绍了脉冲发生器的基本原理、硬件构成和实现方法,阐述了一种基于DSP -FP G A 数字系统的PWM 控制脉冲生成方法,并给出了仿真及实测实验结果。 【关键词】 脉宽调制;脉冲发生器;可编程门阵列 1 FP G A 简介 FP G A (Field Programmable G ate Array ,可编程门阵列)是美国Xinlinx 公司推出的一种采用单元型结构的新型PLD 器件。它采用CMOS 、SRAM 工艺制作,在结构上与阵列型PLD 不同,它的内部由许多独立的可编程逻辑单元构成,各逻辑单元之间可以灵活地相互连接,具有密度高、速度快、编程灵活和可重新配置等诸多优点。FP G A 已成为当前主流的PLD 器件之一。 1.1 PLD 的主要特点 (1)缩短研制周期。 (2)降低设计成本。用PLD 来设计和改造电子产品可以大幅度地减少印制板的面积和接插件,降低装配和调试费用。 (3)提高设计灵活性和可靠性。大量分立式元器件在向印制板上装配时,往往会发生由于虚焊或接触率近似于线性增加,且线性斜率较小;肝脏中大小不同的散射源对不同频率的声波存在有不同的散射效应。 由于肝脏组织结构的非均匀性、复杂性及其各部分散射相关长度分布的不一致性,其散射谱随深度增加而衰减变化,并非完全呈线性关系,而呈现较复杂的关系变化。 ⑵肝叶边缘部分及表层区域,其结构散射近似呈瑞利散射特征;肝叶表层以下与肝叶中心之间的中间区域,其结构散射呈随机散射特征;肝叶中心区域,其结构散射呈扩散漫射特征,也有较强的反射。 ⑶利用区域结构散射特征谱,不仅可对各特征区域组织微结构作出粗略估计,而且可通过区域散射谱特征的变化,对生物软组织的生理病理变化的判断提供依据。 综上所述,利用超声散射谱分析,可为B 超的形态学图像信息诊断提供一个组织特征的信息,在临床上是有应用前景的。 参考文献 [1]Luigi Landini et al.IEEE Trans on U FFC.1990,37(5):448-456 [2]陈启敏等.声学学报.1995,Vol.21,No.4:692-699 [3]E.J.Feleppa ,et al.IEEE Annual International Conference ,EMB ,1990;12(1):337 (责任编辑:常 平) 2003年4月第19卷第2期 武警工程学院学报JOURNAL OF EN GG COLL EGE OF ARMED POL ICE FORCE Apr.2003Vol.19No.2 ①收稿日期:2002-12-06作者简介:张涛(1968.07-),1994年毕业于西安交通大学工业电器自动化专业,现在北方交通大学电子信息工程学院电子与信息工程专业攻读硕士学位。

基于FPGA的模拟IIC接口设计与实现

研究生课程论文 课程名称基于FPGA的模拟IIC接口设计与实现授课学期2012 学年至2013 学年第一学期学院电子工程学院 专业电子与通信工程 学号2012011603 姓名 任课教师 交稿日期2013.01.10 成绩 阅读教师签名 日期 广西师范大学研究生学院制

基于FPGA的模拟I2C接口设计与实现 摘要:本文论述了I2C总线的基本协议,以及基于FPGA 的模拟I2C 总线接口模块的设计,在QuartusII软件中用Verilog HDL语言编写了部分I2C总线接口功能的程序代码,生成原理图模块。并连接好各个模块,进行了时序仿真。最后,下载到FPGA的板运行测试。 关键词:I2C 接口FPGA Verilog 1课题研究意义、现状及应用分析 目前市场上主流的嵌入式设备主要是微处理器、DSP等,但FPGA 以其独有的高抗干扰性、高安全性正在逐步取得开发公司的青睐,在FPGA上开发I2C势在必行。并且利用EDA 工具设计芯片实现系统的功能,已经成为支撑电子设计的通用平台,并逐步向支持系统级的设计方向发展。模块化的设计思想在软件设计过程中越来越被重视。I2C总线是Philips 公司推出的双向两线串行通讯标准,具有接口线少、通讯效率高等特点。因此,基于FPGA的I2C总线设计有着广泛的应用前景。

2课题总体方案设计及功能模块介绍 本设计主要分三大模块,分别是I2C 总线接口模块、按键输入控制模块、数码管显示模块。I2C总线模块集成了I2C协议用于和总线相接EEPROM的通信;按键输入控制模块用于控制I2C模块的页读、页写、字节读、字节写功能;数码管显示模块用于显示通过I2C总线读取EEPROM中的数据。 3I2C接口设计原理 I2C总线最主要的优点是其简单性和有效性。由于接口直接在组件之上,因此I2C总线占用的空间非常小,减少了电路板的空间和芯片管脚的数量,降低了互联成本。总线的长度可高达25英尺,并且能够以10 Kbps的最大传输速率支持40个组件。I2C总线的另一个优点是,它支持多主控(multimastering),其中任何能够进行发送和接收的设备都可以成为主总线。一个主控能够控制信号的传输和时钟频率。 3.1总线的构成 I2C总线是由数据线SDA和时钟SCL构成的串行总线,可发送和接收数据。在CPU与被控IC之间、IC与IC之间进行双向传送,最高传送速率100kbps。各种被控制电路均并联在这条总线上,但就像电话机一样只有拨通各自的号码才能工作,所以每个电路和模块都

基于fpga的eeprom设计

二线制I2C CMOS 串行EEPROM 的FPGA设计 姓名:钱大成 学号:080230114 院系:物理院电子系 2011年1月1日

一、课程设计摘要: (1)背景知识: A、基本介绍: 二线制I2C CMOS 串行EEPROM AT24C02/4/8/16 是一种采用CMOS 工艺制成的串行可用电擦除可编程只读存储器。 B、I2C (Inter Integrated Circuit)总线特征介绍: I2C 双向二线制串行总线协议定义如下: 只有在总线处于“非忙”状态时,数据传输才能被初始化。在数据传输期间,只要时钟线为高电平,数据线都必须保持稳定,否则数据线上的任何变化都被当作“启动”或“停止”信号。图1 是被定义的总线状态。· ①总线非忙状态(A 段) 数据线SDA 和时钟线 SCL 都保持高电平。 ②启动数据传输(B 段) 当时钟线(SCL)为高电平状态时,数据线(SDA)由高电平变为低电平的下降沿被认为是“启动”信号。只有出现“启动”信号后,其它的命令才有效。

③停止数据传输(C 段) 当时钟线(SCL)为高电平状态时,数据线(SDA)由低电平变为高电平的上升沿被认为是“停止”信号。随着“停在”信号出现,所有的外部操作都结束。 ④数据有效(D 段) 在出现“启动”信号以后,在时钟线(SCL)为高电平状态时数据线是稳定的,这时数据线的状态就要传送的数据。数据线(SDA)上的数据的改变必须在时钟线为低电平期间完成,每位数据占用一个时钟脉冲。每个数传输都是由“启动”信号开始,结束于“停止”信号。 ⑤应答信号 每个正在接收数据的EEPROM 在接到一个字节的数据后,通常需要发出一个应答信号。而每个正在发送数据的EEPROM 在发出一个字节的数据后,通常需要接收一个应答信号。EEPROM 读写控制器必须产生一个与这个应答位相联系的额外的时钟脉冲。在EEPROM 的读操作中,EEPROM 读写控制器对EEPROM 完成的最后一个字节不产生应答位,但是应该给EEPROM 一个结束信号。 C、3. 二线制I2C CMOS 串行EEPROM读写操作 ① EEPROM 的写操作(字节编程方式) 所谓EEPROM 的写操作(字节编程方式)就是通过读写控制器把一个字节数据发送到EEPROM 中指定地址的存储单元。其过程如下:EEPROM 读写控制器发出“启动”信号后,紧跟着送4 位I2C 总线器件特征编码1010 和3 位EEPROM 芯片地址/页地址XXX 以及写状态的R/W 位(=0),到总线上。这一字节表示在接收到被寻址的EEPROM 产生的一个应答位后,读写控制器将跟着发

HDLC协议

什么是HDLC?HDLC是什么意思? HDLC英文全称High level Data Link Control,高级数据链路控制,HDLC是一个在同步网上传输数据、面向位的数据链路层协议,它是个由1970年代IBM所提出的对称式资料连结控制(Synchronous Data Link Control,SDLC)所研发出来的ISO标准。 高级数据链路控制(HDLC)协议是基于的一种数据链路层协议,促进传送到下一层的数据在传输过程中能够准确地被接收(也就是差错释放中没有任何损失并且序列正确)。HDLC 的另一个重要功能是流量控制,换句话说,一旦接收端收到数据,便能立即进行传输。H DLC 具有两种不同的实现方式:高级数据链路控制正常响应模式即HDLC NRM(又称为SDLC)和 HDLC 链路访问过程平衡(LAPB)。其中第二种使用更为普遍。HDLC 是 X.25 栈的一部分。 HDLC 是面向比特的同步通信协议,主要为全双工点对点操作提供完整的数据透明度。它支持对等链路,表现在每个链路终端都不具有永久性管理站的功能。另一方面,HDLC NRM 具有一个永久基站以及一个或多个次站。 HDLC LAPB 是一种高效协议,为确保流量控制、差错监测和恢复它要求额外开销最小。如果数据在两个方向上(全双工)相互传输,数据帧本身就会传送所需的信息从而确保数据完整性。

帧窗口是用于在接收第一个帧已经正确收到的确认之前发送复帧。这就意味着在具有长“turn-around”时间滞后的情况下数据能够继续传送,而不需要停下来等待响应。例如在卫星通信中会发生这种情形。 通常,帧分为三种类型: 信息帧:在链路上传送数据,并封装OSI体系的高层; 管理帧:用于实现流量控制和差错恢复功能; 无编号帧:提供链路的初始化和终止操作。 协议结构 Flag ― 该字段值恒为 0x7E。 Address Field ― 定义发送帧的次站地址,或基站发送帧的目的地。该字段包括服务访问点(6比特)、命令/响应位(表示帧是否与节点发送的信息帧有关或帧是否被节点接收)、地址扩展位(通常设置为1字节长)。当设置错误时,表示一个附加字节。

基于FPGA芯片的最小系统设计

黑龙江大学本科生 毕业论文(设计)档案编码: 学院:电子工程学院 专业:电子信息工程 年级:2007 学生姓名:王国凯 毕业论文题目:基于FPGA 的电梯自动控制 系统设计

摘要 本文在介绍了在当前国内外信息技术高速发展的今天,电子系统数字化已成为有目共睹的趋势。从传统的应用中小规模芯片构成电路系统到广泛地应用单片机,直至今天FPGA 在系统设计中的应用,电子设计技术已迈人了一个全新的阶段。FPGA 利用它的现场可编程特性,将原来的电路板级产品集成为芯片级产品,缩小体积,缩短系统研制周期,方便系统升级,具有容量大、逻辑功能强,提高系统的稳定性,而且兼有高速、高可靠性。越来越多的电子设计人员使用芯片进行电子系统的设计,通过基于FPGA 电梯系统开发设计,说明了FAPG 芯片研究的动机和研究意义。 关键词 FPGA;电梯系统;FLEX10K;JTAG;模块设计

Ab s t ract This paper introduces the rapid development of information technology around the world today. Digitalized electronic systems have become the trend. From the traditional application of small and medium-chip circuitry to Microcontroller and FPGA application in system design, electronic design technology is stepping into a new field. By using its field programmable features, FPGA changes the original circuit board-level products to the chip-level integration products. Now FPGA has advantages of reduced the size, shorten development cycle, facilitated in system upgrades, highly capacity, strong logic functions, stable system and high speed. More and more electronic designers use FPGA to design electronic systems. This paper shows the motivation and significance of designing by FPGA through the elevator FPGA system design. Ke ywo r d FPGA; Mini-System; FLEX10K; JTAG;Module design

实验16 路由器接口HDLC协议封装配置(改写)

实验18路由器接口HDLC协议封装配置 【背景知识】 教材4.4.3内容。理解掌握如下知识点: (1)理解在广域网环境下采用串行方式进行通信,因此需要相应的串行通信协议,如HDLC、PPP、Frame-Relay等; (2)掌握串行通信时的DTE和DCE概念,理解主要区别在于DCE提供时钟信号而DTE只是接受时钟信号; (3)cisco路由器的串行端口上,HDLC是缺省配置,而且采用的是cisco的私有协议HDLC,而不是通用的HDLC标准。 (4)在实验室环境中,将两台路由器直接相连(称为背靠背连接)。虽然路由器本质上属于DTE,但在此环境下可以将其中一台路由器模拟为DCE。究竟哪台路由器是DCE,取决于具体的连线。确定为DCE的路由器串行端口,必须配置时钟信号。 【实验拓扑】 实验线路连接图8-21所示,实验时使用Cisco Packet Tracer5.2完成拓扑结构搭建。 图8-21 实验18线路连接图 【实验内容】 (1) 选择两台C2811 路由器,分别关闭电源后添加WIC-2T 模块,添加位置为插槽0/接口适配器0,如下图8.22 所示。开启电源之后使用Serial 电缆将两台路由器的Serial0/0/0接口进行连接,连接时使得C2811B 为DCE 端、C2811A 为DTE 端。 图8.22 WIC-2T 模块安装位置 【提示1】图8.22所示界面,可以单击某台路由器的图标,然后在弹出的框中选择“Physical”选项卡,接着在左侧一栏中选择WIC-2T,最后按住鼠标左键不变拖动到对应的适配器即可。 【提示2】在选择线缆时,用串行线旁边带时钟符号的线先连接C2811B,那么C2811B即为DCE 端,线另外一头所连接的路由器C2811A就是DTE;反之,亦成立。 (2) 参阅教材4.4.3 中内容,配置C2811A 接口Serial0/0/0 的IP 地址192.168.1.1/24 和二层协议封装为HDLC,配置C2811B 接口Serial0/0/0 的IP 地址192.168.1.2/24 和二层协

HDLC协议概述

HDLC协议概述 刘文龙(北京理工大学信息与电子学院)学号2120110886 摘要:不同企业和不同公司的产品越来越先进,单板也越来越复杂,单板与单板之间,与终端之间数据传输的容量与可靠性要求也越来越高,简单的通讯方式满足不了要求的。HDLC 链路控制协议是现在常见的同步协议,为使不了解它的人有一个初步的认识,本文对数据链路层的HDLC协议进行综述介绍,主要内容包括HDLC的发展数据链路控制协议,HDLC协议的主要内容、存在的技术标准以及HDLC的应用和发展前景等。并重点介绍了HDLC的基本概念及帧格式。如果想进一步了解,可以参考和查阅其他相关资料。 关键词:HDLC,数据链路层,帧格式,帧结构 一HDLC概述 1.1 HDLC的发展历史 高级数据链路控制(High-Level Data Link Control或简称HDLC),是一个在同步网上传输数据、面向比特的数据链路层协议,它是由国际标准化组织(ISO)根据IBM公司的SDLC(Synchronous Data Link Control)协议扩展开发而成的.其最大特点是不需要数据必须是规定字符集,对任何一种比特流,均可以实现透明的传输。1974年,IBM公司率先提出了面向比特的同步数据链路控制规程SDLC(S ynchronous Data Link Control)。 随后,ANSI和ISO均采纳并发展了SDLC,并分别提出了自己的标准: 1* ANSI的高级通信控制过程ADCCP(Advanced Data Control Procedure), 2* ISO的高级数据链路控制规程HDLC(High-level Data Link Contl)。 从此,HDLC协议开始得到了人们的广泛关注,并开始应用于通信领域的各个方面。1.2 HDLC的特点 HDLC是面向比特的数据链路控制协议的典型代表,有着很大的优势: 1* HDLC协议不依赖于任何一种字符编码集; 2*数据报文可透明传输,用于实现透明传输的“0比特插入法”易于硬件实现; 3*全双工通信,有较高的数据链路传输效率; 4*所有帧采用CRC检验,对信息帧进行顺序编号,可防止漏收或重份,传输可靠性高; 5*传输控制功能与处理功能分离,具有较大灵活性。 由于以上特点,目前网络设计及整机内部通讯设计普遍使用HDLC数据链路控制协议。HDLC已经成为通信领域额不可缺少的一个重要协议。

FPGA设计方案

FPGA课程设计 题目:全天候温度纪录仪的设计与FPGA实现 姓名: 学号: 院系:信息科学与工程学院 专业:计算机技术

摘要 本设计有效的克服了传统的数字温度计的缺点,采用自上而下的设计思路,绘制出了系统结构流程图,最后又在硬件上通过对其进行调试和验证。基于FPGA在Quartus II13.0软件下应用Verilog HDL语言编写程序,采用ALTRA公司Cyclone- IV系列的EP4CE40F23I7 芯片进行了计算机仿真,并给出了相应的仿真结果。该电路能够实现很好的测温功能。 关键字:数字温度计;FPGA;Quartus II130.;Verilog HDL;EP4CE40F2317 Abstract This design effectively overcomes the traditional digital thermometer’s wea knesses and takes a top-down approach to design flow chart of system, and fi nally pass the circuits to the hardware to debug and verify it. This design is b ased on FPGA using Verilog HDL language to write program in Quartus II sof tware, adopting EP4CE40F23I7 chip of Cyclone- IV series of ALTRA company for computer simulation and at the same time showing the corresponding sim ulation result. This circuit is able to carry out excellent temperature- measurem ent function. KeyWords:Digital thermometer;FPGA;Quartus II 13.0;Verilog HDL ;EP4CE40F2317

HDLC协议原理及其概述

HDLC协议原理及其应用概述 摘要:数据链路层的主要功能是在物理层的数字比特流或字节流上传输信息帧,而高级数据链路控制HDLC(High-level Data Link Control)规程是通信领域现阶段应用十分广泛的一个数据链路层协议。HDLC是面向比特的数据链路控制协议的典型代表,它是由国际标准化组织(ISO)定制的,为在数据链路层上操作提供了一系列的标准。本文介绍了HDLC协议的发展历史、主要内容、存在的标准及其应用和发展前景。 关键词:数据链路层、HDLC协议 引言 根据通信的功能,整个通信过程可以分为若干层,每一层的对等协议通过使用下层服务对齐上层提供服务。其中数据链路层在物理层提供服务的基础上向网络层提供透明的和可靠的数据传输服务。为此,数据链路层必须具备一系列相应的功能,主要有:将数据组合成帧,并向帧中插入地址或协议类型信心;提供差错控制以确保可靠的传输;提供流量控制,以避免接收端缓冲区溢出;提供链路管理控制功能。 数据链路层的协议可以分为两类:面向字符的协议和面向比特的协议。其中HDLC(高级数据链路控制)就是一种重要的面向比特的数据链路层协议。 一.HDLC的发展历史 最早的数据链路层协议是面向字符的,有很多缺点:控制报文和数据报文格式不一样;采用停止等待方式,效率低;只对数据部分进行差错控制,可靠性较差;系统每增加一种功能就需要设定一个新的控制字符。为克服这些缺点,上世纪七十年代初,IBM公司推出了著名的体系结构SNA。在SNA的数据链路层规程采用了面向比特的规程SDLC(Synchronous Data Link Control)。所谓“面向比特”就是帧首部中的控制信息不是由几种不同的控制字符组成,而是由首部中各比特的值来决定。由于比特的组合是多种多样的,因此DLC协议能够满足各种用户的不同需求。此外,SDLC还使用同步传输,效率比异步传输有了很大的提高。后来ISO把SDLC修改后成为HDLC(High-level Data Link Control),作为国际标准ISO 3309。我国相应的标准是GB 7496。CCITT则将HDLC再修改后称为链路接入规程LAP(Link Access Procedure),并作为X.25建议书的一部分。不久,HDLC的新版本又把LAP修改为LAPB,“B”表示平衡型(Balanced),所以LAPB叫做链路接入规程(平衡型)。

HDLC协议

HDLC 高级数据链路控制(High-Level Data Link Control或简称HDLC),是一个在同步网上传输数据、面向比特的数据链路层协议,它是由国际标准化组织(ISO)根据IBM公司的SDLC(Synchronous Data Link Control)协议扩展开发而成的. 七十年代初,IBM公司率先提出了面向比特的同步数据链路控制规程SDLC (Synchronous Data Link Control)。随后,ANSI和ISO均采纳并发展了SDLC,并分别提出了自己的标准:ANSI的高级通信控制过程ADCCP(Advanced Data Control Procedure),ISO的高级数据链路控制规程HDLC(High-level Data Link Contl)。 链路控制协议着重于对分段成物理块或包的数据的逻辑传输,块或包由起始标志引导并由终止标志结束,也称为帧。帧是每个控制、每个响应以及用协议传输的所有信息的媒体的工具。所有面向比特的数据链路控制协议均采用统一的帧格式,不论是数据还是单独的控制信息均以帧为单位传送。 每个帧前、后均有一标志码01111110,用作帧的起始、终止指示及帧的同步。标志码不允许在帧的内部出现,以免引起畸意。为保证标志码的唯一性但又兼顾帧内数据的透明性,可以采用“0比特插入法”来解决。该法在发送端监视除标志码以外的所有字段,当发现有连续5个“1”出现时,便在其后添插一个“0”,然后继续发后继的比特流。在接收端,同样监除起始标志码以外的所有字段。当连续发现5个“1”出现后,若其后一个比特“0”则自动删除它,以恢复原来的比特流;若发现连续6个“1”,则可能是插入的“0”发生差错变成的“1”,也可能是收到了帧的终止标志码。后两种情况,可以进一步通过帧中的帧检验序列来加以区分。“0比特插入法”原理简单,很适合于硬件实现。 在面向比特的协议的帧格式中,有一个8比特的控制字段,可以用它以编码方式定义丰富的控制命令和应答,相当于起到了BSC协议中众多传输控制字符和转义序列的功能。 作为面向比特的数据链路控制协议的典型,HDLC具有如下特点:协议不依赖于任何一种字符编码集;数据报文可透明传输,用于实现透明传输的“0比特插入法”易于硬件实现;全双工通信,不必等待确认便可连续发送数据,有较高的数据链路传输效率;所有帧均采用CRC校验,对信息帧进行编号,可防止漏收或重份,传输可靠性高;传输控制功能与处理功能分离,具有较大灵活性和较完善的控制功能。由于以上特点,目前网络设计普遍使用HDLC作为数据链路管制协议。 1.HDLC的操作方式 HCLC是通用的数据链路控制协议,当开始建立数据链路时,允许选用特定的操作方式。所谓链路操作方式,通俗地讲就是某站点以主站方式操作,还是以从站方式操作,或者是二者兼备。 在链路上用于控制目的站称为主站,其它的受主站控制的站称为从站。主站负责对数据流进行组织,并且对链路上的差错实施恢复。由主站发往从站的帧称为命令帧,而由由站返回主站的帧称响应帧。 连有多个站点的链路通常使用轮询技术,轮询其它站的站称为主站,而在点到点链路中每个站均可为主站。主站需要比从站有更多的逻辑功能,所以当终端与主机相连时,主机一般总是主站。 在一个站连接多条链中的情况下,该站对于一些链路而言可能是主站,而对另外一些链路而言又可能是从站。 有些可兼备主站和从站的功能,这站称为组合站,用于组合站之间信息传输的协议是对称的,即在链路上主、从站具有同样的传输控制功能,这又称作平衡操作,在计算

基于FPGA的简易的ALU设计

本科毕业设计开题报告 题目:基于FPGA的简易的ALU设计 院(系): 班级: 姓名: 学号: 指导教师: 教师职称:讲师

xxxxx学院本科毕业设计开题报告 题目基于FPGA的简易ALU设计来源工程实际 1、研究目的和意义 从20 世纪中叶的无线电时代,到21 世纪以计算机技术为中心的智能化加信息化的现代电子时代,电子系统发生了巨大的变化。现代电子系统愈发庞大和复杂,很多应用要求能够在现场进行实时的高速运算,并对系统进行有效地控制。作为这一需求的解决方案,嵌入式计算机应用系统已成为现代电子系统的核心技术。 早期的嵌入式系统是将通用计算机经改装后嵌入到被测控对象去,实现数据采集、分析处理、状态显示、输出控制等功能。随着大规模集成电路技术的发展,中央处理器CPU、随机存取存储器RAM、只读存储器ROM、输入/输出端口I/O等主要的计算机功能部件可以集成在一块集成电路芯片上,这颗芯片就被称为单片机。与改装普通计算机相比,单片机具有性能高、速度快、体积小、价格低、稳定可靠、应用广泛、通用性强等突出优点,因此迅速成为最普及的嵌入式应用系统方案。 通常,我们要实现一些功能可以用单片机来完成,但是,用可编程逻辑FPGA同样可以实现。在计算机中,算术逻辑单元(ALU)是专门执行算术和逻辑运算的数字电路。ALU是计算机中央处理器的最重要组成部分,甚至连最小的微处理器也包含ALU作计数功能。此次我要完成的设计是基于FPGA的四位ALU算数逻辑单元设计。通过对ALU功能的拓展,来实现更快更好的运算功能,相信这一功能的实现将使运算功能更加简单、快捷、准确,从而提高我们今后的学习工作效率。 2、发展情况(文献综述) 算术逻辑单元(arithmetic logic unit,缩写ALU)是进行整数运算的结构。现阶段是用电路来实现,应用在电脑芯片中。 在计算机中,算术逻辑单元(ALU)是专门执行算术和逻辑运算的数字电路。ALU是计算机中央处理器的最重要组成部分,甚至连最小的微处理器也包含ALU作计数功能。在现代CPU和GPU处理器中已含有功能强大和复杂的ALU;一个单一元件也可能含有ALU。 1945年数学家冯诺伊曼在一篇介绍被称为EDV AC的一种新型电脑的基础构成的报告中提出ALU的概念。 早期发展:1946年,冯诺伊曼与同事合作为普林斯顿高等学习学院(IAS)设计计算机。随后IAS计算机成为后来计算机的原形。在论文中,冯诺伊曼提出他相信计算机中所需的部件,其中包括ALU。冯诺伊曼写到,ALU是计算机的必备组成部分,因为已确定计算机一定要完成基本的数学运算,包括加减乘除。于是他相信计算机应该含有专门完成此类运算的部件。 ①数字系统 ALU必须使用与数字电路其他部分使用同样的格式进行数字处理。对现代处理器而言,几乎全都使用二进制补码表示方式。早期的计算机曾使用过很多种数字系统,包括反码、符号数值码,甚至是十进制码,每一位用十个管子。以上这每一种数字系统所对应的ALU都有不同的设计,而这也影响了当前对二进制补码的优先选择,因为二进制补码能简化ALU加法和减法的运算。 ②可行性分析 绝大部分计算机指令都是由ALU执行的。ALU从寄存器中取出数据,数据经过处理将运算结果存入ALU输出寄存器中。其他部件负责在寄存器与内存间传送数据,控制单元控制着ALU,通过控制电路来告诉ALU该执行什么操作。 ③简单运算 大部分ALU都可以完成以下运算∶整数算术运算(加、减,有时还包括乘和除,不过成本

基于FPGA的嵌入式监控系统设计

基于FPGA的嵌入式监控系统设计 来源:无线测温.testeck. 目前,图像监控系统大多采用PC和视频采集卡作为系统主要部分,基于嵌入式技术的图像监控系统设备在我国还只是起步阶段,没有成熟的产品应用。这一现状的根本原因就是我国在开发这类产品时,没有统一的开发标准和共用的开发平台,而且没有可靠的功能和性能测试标准,各个企业的开发技术力量分散,极大的影响了该类产品开发的效率和可靠性。而制造出来的产品同国外同类产品相比,功能相差太大,没有竞争力,市场基本上被国外公司所占领。因此,开发一个该类嵌入式系统势在必行。 系统总体方案 为了实现自动图像报警和图像采集,本文设计了动体检测算法,这是因为绝大多数情况下我们只对监控区域中运动的物体感兴趣,这样可以过滤掉只包含静态背景的图像,从而降低了对有限的嵌入式硬件资源的消耗。由于活动物体大多是人,而且这也是图像监控的目标,为此加入了人体信号探测器,用以辅助动体检测,以达到降低图像报警误报率的目的。本系统主要集成了图像采集、控制和存储等器件或芯片,组成了以FPGA为控制核心的实时图像监控系统。系统

的总体方案如图1所示。 图1 图像监控系统结构图 系统工作流程为:系统上电后,FPGA从外部EEPROM自动加载程序,I2C模块对CIS进行初始化工作参数配置。CIS 向FPGA输入图像数据信号,FPGA将采集的原始数据(RAW)转换成RGB格式,帧缓冲模块(Frame Buffer)每次将相邻两帧图像数据写入SDRAM,然后比较这两帧图像的差值,如果差值大于设定的阈值,并且人体探测器输出高电平,就认为检测到了外界场景的运动,系统会自动将捕获的图像输出到SD卡进行存储。图2给出了系统的工作流程。 图2 系统工作流程图 图3 电源电路原理图 系统硬件设计与实现 图像监控系统处理的数据量较大,同时还要满足实时性要

通信网_HDLC协议概述

HDLC协议概述 摘要 本文首先介绍了HDLC的发展历史以及HDLC协议的链路配置、帧结构等内容,并对现存的HDLC标准和其应用范围及发展前景进行了概述。 关键词 HDLC协议数据链路层标准 正文 一、HDLC发展历史 高级数据链路控制(High-level data link control),简称HDLC,是一个在同步网上传输数据、面向比特的数据链路层协议。 60年代,英国NPL网首先提出分组交换的概念。之后,美国的ARPA网采用分组交换的方式运行。计算机网络纷纷出现,但原来用于终端到计算机之间的通信的控制规程都是以字符为基础的,它们往往难以满足计算机到计算机之间的通信要求。70年代初,IBM公司率先提出了面向比特的同步数据链路控制规程SDLC(Synchronous Data Link Control),SDLC是IBM 系统网络体系结构Systems Network Architecture(SNA)数据链路层的协议。随后,美国国家标准化协会ANSI将SDLC修改为ADCCP(Advanced Data Control Procedure)做为国家标准;ISO将修改后的SDLC称为高级数据链路控制HDLC(High-level Data Link Contl),并将它做为国际标准。HDLC与基本型规程相比较,它的主要进步在于引入一个标志F(01111110)和一个0比特插入机构,使传输数据的控制机构简单,并把面向比特的能力引入传输机构。 国际标准化组织ISO 于1981年正式推荐了一个网络系统结构----七层参考模型,叫做开放系统互连模型(Open System Interconnection,OSI)。OSI 参考模型将整个网络通信的功能划分为七个层次,它们由低到高分别是物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。 HDLC协议 数据链路层,把从物理层来的原始数据打包成帧。数据链路层负责帧在计算机之间的无差错传递。在ISO标准协议集中,数据链路层采用了HDLC协议。

基于FPGA的SPWM设计方案

基于FPGA的SPWM设计方案 第1章绪论 1.1 SPWM介绍 PWM的全称是Pulse Width Modulation(脉冲宽度调制)。,它是通过改变输出方波的占空比来改变等效的输出电压。广泛地用于电动机调速和阀门控制,比如电动车电机调速就是使用这种方式 SPWM,即正弦脉冲宽度调制(Sinusoidal Pulse Width Modulation),就是在PWM的基础上改变了调制脉冲方式,脉冲宽度时间占空比按正弦规律排列,用SPWM波形控制逆变电路中开关器件的通断,使其输出的脉冲电压的面积与所希望输出的正弦波在相应区间内的面积相等,通过改变调制波的频率和幅值则可调节逆变电路输出电压的频率和幅值,这样输出波形经过适当的滤波可以做到正弦波输出。它广泛地用于直流交流逆变器等. 1.2 SPWM原理实现方案 1.2.1 等面积法 该方案实际上就是SPWM法原理的直接阐释,用同样数量的等幅而不等宽的矩形脉冲序列代替正弦波,然后计算各脉冲的宽度和间隔,并把这些数据存于微机中,通过查表的方式生成PWM信号控制开关器件的通断,以达到预期的目的.由于此方法是以SPWM控制的基本原理为出发点,可以准确地计算出各开关器件的通断时刻,其所得的的波形很接近正弦波,但其存在计算繁琐,数据占用内存大,不能实时控制的缺点. 1.2.2 硬件调制法 硬件调制法是为解决等面积法计算繁琐的缺点而提出的,其原理就是把所希望的波形作为调制信号,把接受调制的信号作为载波,通过对载波的调制得到所期望的PWM波形。通常采用等腰三角波作为载波,当调制信号波为正弦波时,所得到的就是SPWM波形。其实方法简单,可以用模拟电路构成三角波载波和正弦

ppp协议和hdlc协议区别

PPP帧格式和HDLC帧格式相似,如图1所示。二者主要区别:PPP 是面向字符的,而HDLC是面向位的 图1 PPP帧格式 可以看出,PPP帧的前3个字段和最后两个字段与HDLC的格式是一样的。标志字段F为0x7E(Ox表示7巳,但地址字段A和控制字段C 都是固定不变的,分别为OxFF 0x03。PPP协议不是面向比特的,因而所有的PPP帧长度都是整数个字节。 与HDLC不同的是多了 2个字节的协议字段。协议字段不同,后面的信息字段类型就不同。如: 0x0021――信息字段是IP数据报 0xC02信息字段是链路控制数据 LCP 0x8021 ――信息字段是网络控制数据 NCP 0xC023信息字段是安全性认证 PAP 0xC025信息字段是LQR 0xC223信息字段是安全性认证 CHAP 当信息字段中出现和标志字段一样的比特0x7E时,就必须采取一些措施。因PPP协议是面向字符型的,所以它不能采用 HDLC所使用的零比特插入

法,而是使用一种特殊的字符填充。具体的做法是将信息字段中出现的每一个0x7E字节转变成2字节序列(0x7D, 0x5E)。若信息字段中出现一个0x7D的字节,则将其转变成2字节序列(0x7D, 0x5D)。若信息字段中出现ASCI码的控制字符,则在该字符前面要加入一个0x7D字节。这样做的目的是防止这些表面上的 ASCI码控制字符被错误地解释为控制字符。HDLC帧结构 HDLC的帧格式如图3所示,它由六个字段组成,这六个字段可以分为五中类型,即标志序列(F)、地址字段(A)、控制字段(C)、信息字段(I)、帧校验字段(FCS)。在帧结构中允许不包含信息字段 I。 图3 HDLC帧结构 (1)标志序列(F) HDLC指定采用01111110为标志序列,称为F标志。要求所有的 帧必须以F标志开始和结束。接收设备不断地搜寻F标志,以实现帧同步,从而保证接收部分对后续字段的正确识别。另外,在帧与帧的空载期间,可以连续发送F,用来作时间填充。

HDLC协议完整过程图解

下图是HDLC的工作过程示意图,对每个过程进行解释。 (a)链路的建立和清除。 SABM:A向B发出SABM无编号帧,设置异步平衡模式; SABM:超时,没有收到B发出的UA无编号确认帧,发送端自动重发;UA:此时B准备就绪,发出UA确认帧,链接建立; DISC:A发出DISC断开帧; UA:B回应UA确认帧,链接拆除。

(b)双向数据交换 I00:A发送第0帧信息帧,并表示期望接收到对方第0帧信息; I01:B发送第0帧信息帧,并表示期望接收到对方第1帧信息,同时表示对方第1帧以前的帧已经可靠地接收; I11:A发送第1帧信息帧,并表示期望接收到对方第1帧信息,同时表示对方第1帧以前的帧已经可靠地接收; I21:A发送第2帧信息帧,并表示期望接收到对方第1帧信息; I13:B发送第1帧信息帧,并表示期望接收到对方第3帧信息,同时表示对方第3帧以前的帧已经可靠地接收; I32:A发送第3帧信息帧,并表示期望接收到对方第2帧信息,同时表示对方第2帧以前的帧已经可靠地接收; I24:B发送第2帧信息帧,并表示期望接收到对方第4帧信息,同时表示对方第4帧以前的帧已经可靠地接收; I34:B发送第3帧信息帧,并表示期望接收到对方第4帧信息; RR4:A表示准备接收4号帧信息,确认序号为4以前的帧已经接收。

(c)接收站忙 I30:B发出第3帧信息帧,表示期望并表示期望接收到对方第0帧信息;RNR4:A表示暂停接收下一帧,无法接受4号帧信息,确认4及其以前的各帧RNR0P:B询问A是否准备就绪,期待A发送信息帧0; RNR4F:A仍未准备就绪,无法接受4号帧信息; RNR0P:B再次询问A是否准备就绪,期待A发送信息帧0; RR4F:A发出监督帧,RR表示准备接收4号帧信息,确认序号为4以前的帧已经接收。 I40:B发出第4帧信息帧,表示期望并表示期望接收到对方第0帧信息; (d)后退重发

相关主题