当前位置:文档之家› 高功率轴快流CO2激光器原理结构

高功率轴快流CO2激光器原理结构


设计:李波
14
激光切割的市场需求
设计:李波
德国Trumpf推出了功率高达12kW的CO2激光复合加工机和功率高达 15kW的三维CO2激光切割机,表明了激光加工装备的高功率发展趋势!
德国Trumpf 12kW-CO2激光切 割、焊接和表面处理复合加工机
德国Trumpf 的15kW-CO2 激光三维激光切割机
D Mode 1000-4000Watts
Q Mode >4000Watts
7
光束质量参数
设计:李波
8
轴快流CO2激光器的诞生
设计:李波
轴快流CO2激光器是在早期的封离式圆形玻璃管纵向激 励CO2激光器的基础上发展而来的。 1965年,Bridge和Petel将放电管壁的温度冷却到60ºC以下来提高激光器的输出功率。 Moeller, Rigder[8]以及Patel[9]等人则采用风冷和水冷的方式来 使放电管冷却。 1969年Cool等人将快速流动技术引入到了这种激光器 中,通过工作气体的高速流动来使其冷却,从而获得 了较高功率的激光输出。
88
射频功率反馈
设计:李波
89
射频功率控制
设计:李波
90
射频电源控制信号
设计:李波
RF ON
RF OFF
91
设计:李波
连续模式
脉冲模式
92
连续工作模式
设计:李波
93
连续工作模式
设计:李波
94
设计:李波
门控频率=200Hz
95
设计:李波
门控频率=5000Hz
96
设计:李波
门控频率=50000Hz
设计:李波
Trumpf轴快流CO2激光器概述
17
激光器构成
设计:李波
冷水机 控制系统 射频电源
激光发生器 操作面板
18
激光发生器构成
设计:李波
热交换器
涡轮风机
激光谐振腔
光闸
功率计
激光器支撑
19
激光谐振腔构成
设计:李波
转折镜
窗口与尾镜
放电管
20
基本工作原理
设计:李波
21
设计:李波
Trumpf CO2激光器谐振腔
设计:李波
73
Trumpf激光器功率采集
1、尾镜 3、冷却水
设计:李波
2、功率传感器 4、模拟量采集
74
设计:李波
Trumpf CO2激光器控制系统
75
控制系统结构图
设计:李波
76
Profibus连接原理图
设计:李波
77
设计:李波
1、Profibus通信电缆
2、以太网线
A、TASC3控制系统 B、BUSCH IO模块
设计:李波
68
激光器工作过程中的气压曲线
设计:李波
1、抽气 2、自动净化 3、充气 4、Beam off 5、Beam on 6、Beam off 7、关机
69
气压控制原理
设计:李波
70
设计:李波
Trumpf CO2激光器功率检测
71
功率检测方法-输出激光采样
设计:李波
72
功率检测方法-尾镜取样检测
C、射频电源控制模块
78
设计:李波
TASC3 控制系统
1、软驱
2、电源 3、射频电源控制模块
4、多功能板
5、扩展插槽 6、CP600S嵌入式系统 7、Profibus从模块 8、Profibus主模块
79
主控制器
设计:李波
CP 600-S
处理器 存储 操作系统
奔腾133M 32M Ram 8M flash Vx Works
维护
免维护
80
设计:李波
81
设计:李波
1、32路输入模块
2、32路输入模块 3、RM2-DP12模块 4、数码管状态显示 5、Profibus DP接口 6、+24V电源 7、扩展槽 8、32路输出模块 BE1-BE4:输入插槽 BA1-BA4:输出插槽
82
模块地址编码
设计:李波
83
RM2-DP12模块
高功率轴快流CO2激光器原理结构
设计:李波
1
设计:李波
轴快流CO2激光器基本原理
2
光的受激辐射
设计:李波
3
CO2激光器的受激辐射
设计:李波
4
激光工作原理:
设计:李波
激光工作物质 全 反 射 镜 半 反 射 镜
out 光放大原理
5
激光的特性
设计:李波
单色性
相干性
方向性
6
激光模式
设计:李波
TEM00 Mode <1000Watts
热交换器
56
设计:李波
1、叶轮 2、外壳 3、扩散器 A、气体入口 B、气体出口
57
设计:李波
1、扩散器
2、叶轮
58
风机结构
设计:李波
1、叶轮 2、上保护轴承 3、转子(永磁) 4、定子 5、下保护轴承 6、驱动轴 7、磁板
59
定子
设计:李波
1、水冷
2、开口
3、线圈
4、电机电缆
5、电机温度电缆
设计:李波
84
输入模块
设计:李波
85
输出模块
设计:李波
86
射频电源控制模块
设计:李波
87
射频电源控制模块
设计:李波
9、数码管状态显示 10,11、控制板 13、+5V,+\-15V电源
14、24V电源
1、A7通信接口板(RS232,Canbus) 2、A8 Profibus接口板 3、Profibus接口 4、A10安全联锁接口板 5、X8测量插头 6、扩展板
1、凹面镜
a、进入的光束直径
2、凸面镜
b、离开的光束直径
采用扩束镜延长激光加工的可用光程,在飞行光路激光加工中广泛应用。
33
光闸
设计:李波
34
设计:李波
Trumpf CO2放电结构
35
直流放电结构
设计:李波
36
36
直流放电特点
设计:李波
电极位于放电管内,放电方向与光束方向一致; 可以有多种电极结构; 起辉电压高,一般要使用触发电极; 易产生放电不稳定性,要求在阳极形成湍流; 不易调制:工频直流电源,调制频率一般最大为2kHz, 开关电源,调制频率一般最大为5kHz;
轴快流CO2激光器
9
直流激励轴快流CO2激光器
设计:李波
10
射频激励轴快流CO2激光器
射频电源
3 1
设计:李波
激光器谐振腔
匹配网络
2
2
激 光 器 中 央 控 制 系 统
7
7
8
全自动混气单元
6
4
冷水机 气体循环冷却系统
5
N2
CO2
He
Air
1 激光谐振腔 2 谐振腔镜片 3 放电电极 4 涡轮风机 5 真空泵 6 电磁阀 7 风机出气口换热器 8 风机进气口换热器
1、窗口
2、尾镜
3、转折镜
4、转折镜安装组件
26
谐振腔镜片
镜子类型 转折镜 材料 铜(镀膜) 直径 60mm 反射率
≥99.7% p-偏振方向 ≥99.9% s-偏振方向
设计:李波
曲率半径 平面
输出镜
ZnSe(镀膜) 1.65’’
40%
外面:30 mcx 里面:30 mcc 外面:平面 里面:30 mcc
设计:李波
51
设计:李波
Trumpf CO2气体循环冷却
52
免维护磁悬浮涡轮风机
设计:李波
罗茨风机
涡轮风机
磁悬浮涡轮风机
53
气体循环原理图
设计:李波
54
风机罩
设计:李波
1、涡轮风机 2、叶轮 3、风机罩 4、热交换器 5、翅片管 6、冷却水入口 7、气体入口 8、气体出口
55
设计:李波
涡轮风机
27
尾镜
GaAs(镀膜) 1.65’’
99.7%
பைடு நூலகம்
设计:李波
1、调节垂直方向 2、调节水平方向
28
模式检测工具
设计:李波
1、热敏板
2、紫外灯
29
检测示意图
设计:李波
1、热敏板
2、紫外灯
3、激光束(尾镜)
30
设计:李波
未调整好的模式分布
调整好的模式分布
31
激光烧斑图样
设计:李波
32
扩束镜
设计:李波
39
39
高功率连续放电(85mA)
设计:李波
放电管4.2
放电管4.3
40 放电管4.1
射频放电
设计:李波
41
41
多根放电管串联
设计:李波
42
两种放电结构
设计:李波
43
阻抗匹配
设计:李波
射频电源
13.56MHz
50欧姆
44
阻抗匹配器
设计:李波
45
阻抗匹配布置
设计:李波
为每台电源配置一个阻抗匹配器
22
轴快流CO2激光器常用激光谐振腔
设计:李波
尾镜
窗口
单折腔 U形多折腔
矩形多折腔
23
谐振腔结构
设计:李波
US:转折镜
RS:尾镜
AS:窗口
24
Trumpf12000谐振腔结构
相关主题