石油工程采油工程采油工程课程设计姓名:李健星班级: 1班学号: 915463中国石油大学(北京)二O一二年四月目录1、设计基础数据: (1)2、具体设计及计算步骤 (2)(1)油井流入动态计算 (2)(2)流体物性参数计算方法 (4)(3)井筒温度场的计算 (6)(4)井筒多相流的计算 (7)(5)悬点载荷和抽油杆柱设计计算 (16)(6)抽油机校核 (21)(7) 泵效计算 (21)(8) 举升效率计算 (24)3、设计计算总结果 (26)有杆抽油系统包括油层,井筒流体、油管、抽油杆、泵、抽油机、电动机、地面出油管线直到油气分离器。
有杆抽油系统设计就是选择合理的机,杆,泵,管以及相应的抽汲参数,目的是挖掘油井潜力,使生产压力差合理,抽油设备工作安全、高效及达到较好的经济效益。
本次采油工程课程设计的主要内容是进行有杆抽油生产系统设计,通过设计计算,让学生了解有杆抽油生产系统的组成、设计原理及设计思路。
1、设计基础数据:井深:2000+学号末两位63×10m=2630m套管内径:0.124m油层静压:给定地层压力系数为 1.2MPa/100m,即油层静压为井深2630m/100m×1.2MPa=31.56MPa油层温度:90℃恒温层温度:16℃地面脱气油粘度:30mPa.s油相对密度:0.84气相对密度:0.76水相对密度:1.0油饱和压力:10MPa含水率:0.4套压:0.5MPa油压:1 MPa生产气油比:50m3/m3原产液量(测试点):30t/d原井底流压(测试点):12MPa(根据测试液面计算得到)抽油机型号:CYJ10353HB配产量:50t/d泵径:44mm(如果产量低泵径可改为56mm,70mm)冲程:3m冲次:6rpm沉没压力:3MPa电机额定功率:37kw2、具体设计及计算步骤(1)油井流入动态计算油井流入动态是指油井产量与井底流动压力的关系,它反映了油藏向该井供油的能力,从单井来讲,IPR曲线表示了油层工作特性。
因而,他既是确定油井合理工作方式的依据,也是分析油井动态的基础。
本次设计油井流入动态计算采用Petrobras方法。
Petrobras方法计算综合IPR曲线的实质是按含水率取纯油IPR曲线和水IPR曲线的加权平均值。
当已知测试点计算采液指数时,是按产量加权平均;当预测产量或流压加权求平均值。
采液指数计算已知一个测试点:wftest P 、txest q 和饱和压力b P 及油藏压力P 。
① 因为wftest P ≥b P ,1j =wfesttxwst P P q -1=)124.26(30-=2.083t/(d.MPa)某一产量t q下的流压Pwfb q =j(b P P -1)=2.083 x (26.4-10)=34.161t/d m o zx q =b q +8.1b jP =34.161+8.110083.2⨯=45.733t/d omzx q -油IPR 曲线的最大产油量。
① 当0〈q t 〈b q 时,令q 1t =10 t/d ,则p 1wf =j q P t -1=083.2104.26-=21.599MPa 同理,q 2t =20 t/d ,P 2wf =16.798MPa q 3t =30 t/d ,P 3wf =11.998 MPa② 当q b 〈q t 〈omzx q 时,令q 4t =40 t/d,则按流压加权平均进行推导得:P 4wf =f )(1j q P t w -+0.125(1-f w )P b=0.4)083.2404.26(-⨯+0.125×(1-0.4)×10×[-1+])161.34733.45161.3440(8081---=6.910MPa当q omzx 〈q t 时,1()(89)()omzx t omzx w wf w q q q f p f p J J--=--令q 6t =46t/dP wf =0.4)083.2733.454.26(-⨯-083.2)94.08()733.4546(-⨯⨯- =2.521MPa综上,井底流压与产量的关系列表如下:得到油井的流入动态曲线如下图:图1 油井IPR 曲线(2) 流体物性参数计算方法在地层的压力26.4Mpa 和温度90℃时。
① 原油的API 度y API =5.1315.1410-y =5.13184.05.141-= 36.95 o y —地面条件下的原油相对密度:0.84。
② 溶解油气比的计算因为15〈y API =36.95,使用Lastater 的相关式236501ngoS o ngy R m y γ=⨯⨯- (12)式中,o m —地面脱气原油的有效分子量;ng y —天然气的摩尔分数。
o m 的计算y API <38时 0943.0933.61APIo y m -==264.93ng y 的计算:首先计算泡点压力系数:58.055810(273.15)g g p x t γ⨯⨯=⨯+=1.69由448.37.0<<g x , 0.24010.27g ng x y ln=⨯ =0.4398所以: R S =23650*ngng y y m y -1*00=58.8733m m③ 原油的体积系数的计算5.615 2.2540F R t =+=556.92 B 0=0.972+0.000147*F 175.1=1.22 m 3/ m 3 ④ 原油密度计算P 0=030)10*206.1(1000B y R y S S -+=732.75kg/m 3式中,P-在压力P及温度T下的原油密度,kg/m3;y-地面条件下的原油相对密度;ys-地面条件下的气相对密度;RS-在压力P及温度T下的溶解油气比,m3/ m3;B-在压力P及温度T下的原油体积系数,m3/ m3⑤油水混合液体的密度Pz =wwwfpfp*)1(*+-=839.65 kg/m3⑥液体粘度1)原油粘度“死油”(脱气油)粘度μod =1000110-x=0.21841011000-=6.5355*104-Pa.s式中x=y*(32+1.8t)163.1-=0.2184(地面)y=100“活油”(饱和油)粘度A=10.715*(5.615Rs+100)515.0-=0.4715B=5.44*(5.615Rs+150)338.0-=0.6748μo =1000*1000(*BodA)μ=3.5386*104-Pa.sμod 、μO为原油死油与活油的粘度,单位为Pa.s2)水的粘度μw =2521.0031.47910(32 1.8) 1.98210(32 1.8)1000t te---⨯++⨯⨯+= 1.121000e-=3.262*104-Pa.s式中,μw 为水的粘度,单位为Pa.s 3)液体的粘度μ=μo .(1-f w )+μw *f w =3.428*104-Pa.s⑦ 油、天然气的表面张力σog =71.01510[42.40.047(1.832)0.267()]1000PAPI t y e --⨯-+-⨯=3.916 N/m式中,σog 为油、气的表面张力,N/m ; ⑧ 水、天然气的表面张力 σ)(t ={[σ2068.1248t-)33.23(-σ78.137]+σ)78.137(} 其中,σ)33.23(=100076710*62575.3Pe --=0.1277 N/mσ78.137=100010*7018.85.527p--=3.717*102- N/m所以σ)(t ={[σ2068.1248t-)33.23(-σ78.137]+σ)78.137(} =7.496*102- N/m(3) 井筒温度场的计算根据经验公式计算沿井筒的温度分布: [])(1L H B ATA ATA or o ATA e L B HB t t t t -⨯--+⨯⨯⨯-+= (24))1(2W PATA F G K B +⨯⨯=π10004246.51573.11G P eK -⨯+=241000⨯=L Q G 式中,L Q ——油井产液量,t/d ; w F ——重量含水率,小数;o t ——恒温层温度,℃;r t ——油层温度,℃;H ——油层中部深度,m ;L ——井筒中任意点深度,m 。
得出:G=50100024⨯=2083.33; 2083.33100011.1573 5.4246P K e-=+⨯=0.54563;20.545632083.33(10.4)ATAB π⨯=⨯+=1.17542⨯103- 所以温度的表达式:31.1754210(1000)1662.95621.175421L t e --⨯⨯-⎡⎤=+⨯+-⎣⎦,该公式是按照配产流量得出的,即Q=50 t/d 。
(4)井筒多相流的计算 井筒多相流压力梯度方程井筒多相管流的压力梯度包括:因举高液体而克服重力所需的压力势能、流体因加速而增加的动能和流体沿管路的摩阻损失,其数学表达式如下:=dhdpρm gsinθ+ρm v m m m f dh dv +ρm /d*22m v式中ρm 为多相混合物的密度;v m 为多相混合物的流速;f m 为多相混合物流动时的摩擦阻力系数;d为管径;p为压力;h为深度;g为重力加速度; θ为井斜角的余角。
井筒多相管流计算包括两部分:1)由井底向上计算至泵入口处,计算下泵深度Lp。
采用深度增量迭代方法,首先估算迭代深度。
在本设计中为了减小工作量,采用只迭代一次的方法。
计算井筒多相管流时,首先计算井筒温度场、流体物性参数,然后利用Orkiszewski方法判断流型,进行压力梯度计算,最后计算出深度增量和下泵深度Lp。
按深度增量迭代的步骤:①井底流压12Mpa,假设压力降为0.2 Mpa;估计一个对应的深度增量h∆=40m,即深度为1990m。
②由井温关系式可以计算得到该处的井温为:89.96℃。
③平均的压力和温度:T=(90+89.96)/2=89.98℃。
平均压力P=(12+11.8)/2=11.9 MPa。
由平均压力和平均温度计算的得到流体的物性参数为:溶解油气比RS=71.31 ;原油体积系数B0=1.25;原油密度P=739.00;油水混合液的密度Pz =843.40;死油粘度μod=6.537*104-;活油粘度μO =3.318*104-;水的粘度μw=3.263*104-;液体的粘度μ= 3.296*104-。
以上单位均是标准单位。
④由以上的流体物性参数判断流型:不同流动型态下的mρ和fτ的计算方法不同,为此,计算中首先要判断流动形态。
该方法的四种流动型态的划分界限如表1所示。