优化设计方法的发展与应用情况贾瑞芬张翔(福建农林大学 机电工程学院, 福建 福州 350002) 摘 要:本文概要地介绍了优化设计方法在国内近年的应用和发展情况,包括传统优化方法、现代优化方法,以及优化软件的应用和发展情况。
关键词:优化 遗传算法 神经网络 MATLAB 优化方法是20世纪60年代随着计算机的应用而迅速发展起来的,较早应用于机械工程等领域的设计。
80年代以来,随着国内有关介绍优化设计方法的专著(如《机械优化设计》[1])的出版和计算机应用的普及,优化设计方法在国内的工程界得到了迅速的推广。
本文按传统优化方法、现代优化方法、优化软件应用等三个方面,概要地介绍优化设计方法近年来在国内工程界的应用和发展情况。
1. 传统优化方法的应用与改进情况 1.1传统优化方法的应用 从近10年发表的工程优化设计的论文可以看出,罚函数法、复合形法、约束变尺度法、随机方向法、简约梯度法、可行方向法等,都有较为广泛的应用。
对重庆维普信息数据库中的工程技术类刊物做检索,1993年至2003年,这6种约束优化方法应用的文献检出率的比例,依次约为12:10:3:1.5:1.5。
以机械设计为例,传统优化方法主要应用于机构和机械零部件的优化设计,主要对零件或机构的性能、形状和结构进行优化。
在结构方面,如对升降天线杆的结构优化设计[2],采用内点罚函数法优化,在保证天线杆具有足够的刚度和压弯组合强度的前提下所设计出的结构尺寸比按一般的常规设计方法所计算的尺寸要小,自重更轻。
在形状方面,赵新海等[3]对一典型的轴对称H型锻件的毛坯形状进行了优化设计,取得了明显的效果。
在性能方面,《凸轮一连杆组合机构的优化设计》[4]一文以最大压力角为最小做为优化目标、并采用坐标轮换法和黄金分割法等优化方法对书本打包机中的推书机构(凸纶—连杆组合机构)进行优化设计,从而使得机构确保运动的平衡性的前提下具有良好的传力性能,使设计结果更加合理。
《弹性连杆机构结构和噪声控制一体化设计》[37]一文,利用改进的约束变尺度法,求解基于噪声控制的弹性连杆机构结构控制同步优化问题,同步优化后机构的声辐射性能指标具有明显改善。
由以上的例子可以看出,因此,传统优化方法仍然具有不可忽视的作用。
将优化技术与可靠性理论相结合,形成了可靠性优化设计法。
按照可靠性优化设计法设计的产品,既能定量地回答产品在运行中的可靠性,又能使产品的功能参数获得优化解,两种方法相辅相成,是一种非常具有工程实用价值的设计方法。
如采用惩罚函数内点法求解齿轮传动的可靠性优化设计的数学模型[5],以及运用二阶矩法和约束随机方向法对钢板弹簧进行可靠性优化设计[6]。
1.2传统优化方法的一些改进 目前,随着工程问题的日益扩大,优化要面对的问题的规模和复杂程度在逐渐增大,传统的优化方法解决这些问题时,就显露出了其局限性与缺陷。
于是就出现了在分析现有算法的基础上,针对方法的不足或应用问题而作出的改进。
1.2.1对传统优化方法应用于离散变量优化的改进工程设计问题中,经常遇到设计变量必须符合本行业的设计规范和标谁,只能取为限定的离散值或整数值的情况。
若应用连续变量优化方法.得到最优解后再作简单的圆整处理,可能造成设计上的不可行解,或得到一个非最优解。
为此适用于变量取离散值的优化方法发展起来。
朱浩鹏等[7]提出了改进的动态圆整法、拉格朗日松弛法。
惩罚函数优化方法是一种常用的求解约束非线性问题的方法,但它仅限于求解连续变量的优化问题。
文章《改进的惩罚函数优化法》[8],对含离散变量的工程问题,构造了一个离散性惩罚项,得到的优化结果是离散值,不需要圆整便可直接应用于工程设计中。
何燕将改进的惩罚函数优化法应用于机械的优化设计中[9],将整个优化过程分为连续变量惩罚函数法的初始优化、带离散变量的惩罚函数法优化和网格法检验三步进行,消除了优化变量初始值对优化结果的影响,使优化结果更为准确、合理。
1.2.2对传统优化方法在求解非线性约束问题时的改进针对多维非线性有约束问题,《进退法在多维非线性有约束优化问题中的应用》[10]一文,考虑了搜索方向和约束条件,提出了改进的进退法来确定搜索区间。
由于本方法不需要对目标函数进行求导,因而它更加适合于多约束维非线性优化问题。
在《内点罚函数法调用PoweII法求优时的1个注》[11]一文中,分析了内点罚函数法调用Powell法求优时,涉及到一个X3=2X n-X0的计算。
因无法确保X3落在可行域内,而一旦X3落在可行域之外,将影响搜索速度或计算的收敛,甚至会引起算法错误导致计算半途终止。
文中依据Powell 法的判据原理,对其应用于内点罚函数法求优时进行了改进,对所进行的比较算例进行统计,用改进后的方法计算,调用目标函数次数下降了32.3%,罚函数构造轮次(罚因子r的递减次数)减少了18.2%。
针对约束坐标轮换法收敛速度较慢,可靠性差的缺点,《对求解约束优化问题中的变量轮换法的改进》[12]在利用约束变量轮换法优点的基础上,建立了一个新的搜索方向,迭代过程类似于约束变量轮换法,并使约束变量轮换法的效能得到加强。
《对优化设计复合形法的改进》[13]一文中,针对一些文献介绍的现行复合形法在快速构造初始复合形,有效进行一维搜索,合理构造新复合形等方面存在不足之处,进行了改进,使计算机程序比较简短,使用操作方便,计算效率比现行复合形法有所提高,适用于求解中、小型约束优化设计问题。
同样,在《对优化设计随机方向法的改进》[14]中,对约束随机方向法也进行了改进,提高了计算效率。
2.现代优化方法的发展及应用 随着优化要面对的问题规模和复杂程度的逐渐增大,以及传统优化方法易出现局部最优解等的局限性,设计工作者吸取其他学科的知识,产生了新的思路,提出了新的算法,如神经网络算法,遗传算法等。
2.1模糊优化的发展 近十年来,模糊优化设计在模糊数学基础上发展起来,并具有较广的前景。
由于事物差异之间的中介过渡过程所带来的事物普遍存在的模糊性;由于定量的研究从物理领域进入到事理领域必然要遇到大量的模糊概念;由于研究对象的复杂化必然要涉及种种模糊因素;由于信息技术、人工智能的研究必然要考虑对模糊信息的识别和处理等。
这些都必然使优化设计问题涉及种种模糊因素。
过去,由于缺乏处理模糊概念的方法和手段,把许多模糊因素人为地当成是确定性的或随机性的进行处理,这样往往漏掉了真正的优化方案,甚至带来一些矛盾的结果。
求解模糊优化问题的一个基本途径,是把模糊优化问题转化为非模糊优化问题,再用普通优化方法求解。
目前实现这种转化的基本方法有两个:一是最优水平截集法,二是近似模糊集合法。
据所查资料显示,最优水平截集法应用较为广泛。
最优水平截集法,是王光远等于1984年提出来的。
其基本思想是:从既安全可靠又经济实用的要求出发,寻求一最优水平截集,也即在标志模糊性的中介过渡过程中,截取一最优的非模糊状态,把原来的模糊优化问题转化为相应的普通优化问题。
于是,该普通优化问题的最优解,就是原模糊优化问题的优化方案。
如《基于模糊分析的环形起重机偏轨箱形主梁的优化设计》[15]一文,以应力、稳定性等的模糊性,建立了模糊约束条件,以偏轨箱形主梁的总质量最小的优化目标,建立了该问题的模糊优化设计数学模型,采用二级模糊综合评判确定最优水平截集,用内点惩罚函数法来寻求最优解。
进行模糊优化设计后,得到性能好、重量轻(一般能减轻重量15%左右)、断面尺寸合理的主梁,缩短了设计周期,提高了设计质量和经济效益。
可见在设计过程中充分考虑了各设计变量和约束条件的模糊性,将模糊分析和优化设计结合起来,可为设计提供理想的结果。
使设计更加合理。
2.2神经网络的发展与应用 对复杂系统进行动态优化设计,其目标函数很难建立,因而用传统优化方法就难以解决,人工神经网络模型是由大量神经元互连而成的网络,具有极强的非线性映射功能,是一种描述和处理非线性关系的有力数学工具。
因此,可以通过神经网络实现系统设计变量与其动态特性参数之间的映射,并利用该神经网络模型建立目标函数,从而使一个复杂的动态优化问题转化为一个相当简单的优化问题,这样就可以利用数学规划法自动实现动态优化设计。
人工神经网络用于优化设计多为BP神经网络和Hopfield网络,其中应用最为广泛的是BP神经网络。
《Hopfield网络在优化计算中的应用》[19]一文,总结了Hopfield网络应用于优化计算的一般步骤和方法、并通过两个应用实例:TSP问题(旅行商问题)和系统参效辨识问题,对应用Hopfield网络求解优化问题的关键步骤及应用方法进行了详细分析和说明。
吴俊飞等利用BP神经网络的高度非线性映射能力,建立了变厚齿轮R V减速器设计变量与其动态参数之间的映射关系,解决了动态优化设计中目标函数难以建立的难题,使复杂的动态优化问题转化为一个简单的普通优化问题,为在系统设计阶段就能够得到具有良好动态特性的结构方案提供了一种新途径[16]。
为提高BP神经网络的收敛速度,曾喆昭等在基于BP神经网络的基础上,针对BP算法收敛速度慢,提出了正弦基函数神经网络算法[17],用于希尔伯特变换器的优化设计,证明了该神经网络算法的收敛性。
许琦提出了利用传统的优化设计方法—梯度法,为BP神经网络的学习提供足够样本集,通过正向传播和误差反向传播建立BP神经网络的拓扑结构,实现了将BP神经网络应用于机械优化设计中,提高了优化的收敛速度[18]。
何德林等提出了复合神经网络[20],能综合利用数学知识和规则知识解决设计问题。
2.3遗传算法的发展与应用 遗传算法(Genetic Algorithm 简称GA)是新近发展起来的一种模拟生命进化机制的搜索和优化方法,是把自然遗传学和计算机科学结合起来的优化方法。
它是根据生物界中基因的遗传变异及达尔文的自然选择和适者生存原理对问题进行随机的进化操作,逐步迭代寻求问题最优解的方法。
1975年,HoIland提出了GA的概念和方法。
因为GA有很强的解决问题的能力和广泛的适应性,因而近年来渗透到研究与工程的各个领域,取得良好的效果。
与传统搜索方向不同的是GA不是对具体参数的搜索空间的一个解进行评估,而是对整个搜索空间的大量可行解同时并行搜索,这样就克服了传统方法(如反向传播算法)可能陷入收敛于局部最优的困境。
GA采用对一组可行解的搜索从某种意义上来说可以理解成对多维参数空间的并行搜索。
问题解可编制成一种编码串,大量的串群组成一代种群,该种群覆盖了整个解空间,初代的赋值是随机的,在进化过程中,由于采用的策略是适者生存的方针,因此,下一代比上一代总是更接近最优解。
遗传算法的优点随着计算机技术的高速发展,其应用前景更加广阔。
目前主要的应用领域有复杂函数的优化求解、结构优化设计,系统控制,自适应控制,供气、供电系统的优化设计等。