声学基础
媒质则是传播声波的条件,两者缺一不可。 • 置于弹性媒质中的振动体,由于它的振动,使得
振动体周围的媒质质点也随之作受迫振动。媒质 质点的振动在媒质中的传播,就称为声波。
媒质质点的运动和波的运动
• 在声波的波动过程中存在着两种既有联系、又有 区别的运动: 媒质质点的运动和波的运动。-麦浪 媒质中的质点仅在其平衡位置附近做往复运动, 它们并没有随着“波”的运动传播出去。 波则是能量传递的一种形式。波传播的是物质 的运动,而不是物质本身。因此,波动是物质运 动的一种形式。
化规律与活塞(声源)相同,但存在一定相位差。
• 换句话说,该点的振动方式在滞后x/c之后才与活
塞的振动方式完全相同。
• 同样地,t一旦确定,则位移仅仅是位置x
的函数。
• 这表示,对于某一确定的时刻而言,不同 质点振动的位移随空间位置也是按正弦的 规律变化的。
• 波长定义为,在一周期T 的时间内声波传播的距离,
p P P0
• 因此,声压定义为由于声扰动而产生的逾量 压强(简称逾压)p。
•在声波传播的过程中,声压p是随空间位置(x,y,z)与时
声场中某点某一时p刻的p瞬(x时, y声, z压, t值) ,称为瞬时声压。
而在一定时间间隔内的最大瞬时声压,称为峰值声压。 如果声压随时间的变化服从简谐规律,则峰值声压也就是
• 自然界中发声体发出的声音从频率角度分 两类: 纯音和复合音
• 纯音: 单一频率成分的音 • 复合音:两种以上频率构成的音,可以分
解为许多纯音之和 • 超低音:习惯上称频率低于60Hz的声音 • 低音: 频率为60-200Hz的声音 • 中音: 频率为200-1KHz的声音 • 中高音:频率为1-5KHz的声音 • 高音: 频率高于5KHz的声音
cT
(2 48)
• 因为周期T 的倒数就是频率f,因此,(2-48)式也可
• 式中c为声c 速。(f2-49)式表明了(2声 速49)c、周期T、频率
T
2f 2
(2 50)
T
• 以质点位移表示的波动方程(1-47)式也可以写成以波
ξ=Asin 2π(ft-χ/λ)= Asin 2π(t/T- χ/λ)
• 音频技术是指声音信号的拾取、传输、存 储和重放的技术。
。
声学基础
• 一、声音的频率范围 • 二、基本声学量 • 三、声波的传播 • 四、人耳的听觉感知特性
一、声音的频率范围
次声波:低于20Hz的声波 超声波:高于20KHz的声波 音频信号: 20Hz- 20KHz人耳可以听到
声音 人的发生器官发出的声音频率:803400Hz 人说话的声音频率:300-3000Hz
• 即用声压、质点振速、媒质密度来描述声过 程。
(二)、声 压
• 在媒质中没有声扰动时,媒质的压强是恒定的。 在大气中,这个压强就是大气压强。
• 由于声波的存在,媒质的压强将发生变化。 • P0表示原来(没有声波存在时)的压强 • P 表示有声波存在时的压强 • 则由于声波的存在而引起的压强变化量
• 声场的特征可以通过媒质中的声压p、质点振 动速度v、或媒质的密度等物理量加以描述。
• 建立这些参数随时间与空间之间的变化关系, 并以数学形式表示,就叫做声波方程,也称 波动方程。
图
• 令活塞以频率作简谐振动,并取活塞的表面 中心(
• 在原点处,亦即在活塞表面处,空气质点的运动与活
0 Asin t
如果声波沿x轴的负向传播,则这时的波动方程
Байду номын сангаас
Asin (t x ) Asin 2 ( ft
x
) Asin 2 ( t
x
)
(2
c
T
• 可以通过声传播时声压与媒质密度的变化规律,求出
2 p 1 2 p c t 2
(2 53)
• 声波方程描述了声压随空间和时间变化的情况。 • 从声压的空间分布来讲,一维的声波方程,反映的 求出(2-53)式在一维情况下的解
• 如果以c表示声波的传播速度(简称声速),则B处
• 为了简便起见,暂且忽略空气吸收,那么,振动的
ξ=Asin (t-χ/c) (2-47)
• 因为B点是任意选取的,可见,x是任意的。
• 因此,(2-47)式就描述了在平面声波传播 过程中,媒质中任何一点、在任一时刻的 质点位移。
• 它反映了有声波存在时,媒质质点的位移 随时间与空间的变化规律。
说明
• 声压随时间的变化服从简谐规律。 • 瞬时声压的方均根值就是有效声压,等于幅值的
0.707倍。 • 一般仪表测试的往往是有效声压值。因此,在实际
应用中人们习惯上所指的声压也往往是声压有效值。
• 声压的基本单位为帕(Pa),同时有 1帕=1牛顿/米2
1微巴=1达因/厘米2 1帕=10微巴
返回
(三)、声波方程
• 描述声场及声波性质的物理量: • 有声波的空间或区域称为声场。 • 与振动有关的物理量有质点振动的位移、速
度、加速度。 • 与媒质的状态发生了变化有关的物理量有媒
质密度、压强、温度等。
• 物理量的选择原则在于它测试的可靠性和简 便性。
• 对于我们最常见的媒质——空气而言,大气 的压强是最容易测定的,因此,采用与压强 有关的声学量来描述声过程。
• 所谓管内的声波,指的就是空气质点振动能 量在管内传递的过程。
• 因此,在离原点O的某一距离处B的空气质点
也将在其平衡位置附近作谐振动,只不过振
动从O点传到B需要一段时间而已。 • 也就是说,O点和B点所不同的是它们的起振
时间不同。这种时间上的差距就是相位的不 同,即这两者之间存在着一定相位差。
• 基音:在复合音分解的信号中,频率最低 的一个纯音成分
• 泛音:比基音频率高整数倍的纯音成分
返回
二、基本声学量
• (一)、声波 • (二)、声压 • (二)、声波方程 • (三)、声波的能量--声强
返回
(一)、声波
• 声波(声音)的产生应具备两个基本要素: 物体的振动和传播振动的媒质。 物体的振动是产生声波的基本原因,而传声
• 这就是以质点位移表示的声波方程。
• 从(2-47)式可以看出,波动方程中含有两个自变
量t和x。这两个自变量反映了质点位移与时间t 和空间位置x之间的相互关系。
• x一旦确定,位移则只是时间t的函数。这表示,
在某一确定位置上,质点振动位移随时间t以正弦
函数的规律变化。
• 在一般情况下,即除x=0外的其它位置,尽管其变