当前位置:文档之家› 生物技术专业综述

生物技术专业综述

生物技术专业综述作为生物技术专业的一名学生,我认为我们应该知道以下内容,以方便我们更好的了解我们所学的内容,这将对我们以后的学习以及就业都有帮助。

我们所学的主要课程:微生物学、细胞生物学、生物化学、遗传学、学、基因工程、细胞工程、微生物工程、生化工程、生物工程下游技术、发酵工程设备等。

生物技术的定义:应用生命科学研究成果,以人们意志设计,对生物或生物的成分进行改造和利用的技术。

现代生物技术综合分子生物学、生物化学、遗传学、细胞生物学、胚胎学、免疫学、化学、物理学、信息学、计算机等多学科技术,可用于研究生命活动的规律和提供产品为社会服务等。

生物技术的发展:生物技术是全球发展最快的高技术之一。

70年代发明了重组DNA技术和杂交瘤技术。

80年代建立了细胞大规模培养转基因技术,现代生物技术(基因工程)制药开始于八十年代初,特别是发明了pcr技术,使现代生物技术的发展突飞猛进,90年代,随着人类基因组计划以及重要农作物和微生物基因组计划的是害死和信息技术的渗透,相继发展起了功能基因组学,生物信息学,组合化学,生物芯片技术以及一系列的自动化分析测试和药物筛选技术和装备。

目前,各种新兴的生物技术已被广泛地应用于医疗,农业,生物加工,资源开发利用,环境保护,并对制药业等产业的发展产生了深刻的影响。

近些年来,以基因工程、细胞工程、酶工程、发酵工程为代表的现代生物技术发展迅猛,并日益影响和改变着人们的生产和生活方式。

所谓生物技术(Biotechnology)是指“用活的生物体(或生物体的物质)来改进产品、改良植物和动物,或为特殊用途而培养微生物的技术”。

生物工程则是生物技术的统称,是指运用生物化学、分子生物学、微生物学、遗传学等原理与生化工程相结合,来改造或重新创造设计细胞的遗传物质、培育出新品种,以工业规模利用现有生物体系,以生物化学过程来制造工业产品。

简言之,就是将活的生物体、生命体系或生命过程产业化的过程。

生物工程包括基因工程、细胞工程、酶工程、发酵工程、生物电子工程、生物反应器、灭菌技术以及新兴的蛋白质工程等,其中,基因工程是现代生物工程的核心。

基因工程(或称遗传工程、基因重组技术)就是将不同生物的基因在体外剪切组合,并和载体(质粒、噬菌体、病毒)的DNA连接,然后转入微生物或细胞内,进行克隆,并使转入的基因在细胞或微生物内表达,产生所需要的蛋白质。

目前,有60%以上的生物技术成果集中应用于医药产业,用以开发特色新药或对传统医药进行改良,由此引起了医药产业的重大变革,生物制药也得以迅速发展。

生物制药就是把生物工程技术应用到药物制造领域的过程,其中最为主要的是基因工程方法。

即利用克隆技术和组织培养技术,对DNA进行切割、插入、连接和重组,从而获得生物医药制品。

生物药品是以微生物、寄生虫、动物毒素、生物组织为起始材料,采用生物学工艺或分离纯化技术制备,并以生物学技术和分析技术控制中间产物和成品质量而制成的生物活化制剂,包括菌苗、疫苗、毒素、类毒素、血清、血液制品、免疫制剂、细胞因子、抗原、单克隆抗体及基因工程产品(DNA重组产品、体外诊断试剂)等。

目前,人类已研制开发并进入临床应用阶段的生物药品,根据其用途不同可分为三大类:基因工程药物、生物疫苗和生物诊断试剂。

这些产品在诊断、预防、控制乃至消灭传染病,保护人类健康中,发挥着越来越重要的作用。

生物技术的发展经历了传统生物技术和现代生物技术发展的两个阶段,目前我们常谈起的是指现代生物技术。

它包括基因工程、细胞工程、酶工程、发酵工程,其中基因工程为核心技术。

由于生物技术将会为解决人类面临的重大问题如粮食、健康、环境、能源等开辟广阔的前景,它与计算机微电子技术、新材料、新能源、航天技术等被列为高科技,被认为是21世纪科学技术的核心。

目前生物技术最活跃的应用领域是生物医药行业,生物制药(常指基因重组药物)被投资者看作为成长性最高的产业之一。

世界各大医药企业瞄准目标,纷纷投入巨额资金,开发生物药品,展开了面向21世纪的空前激烈竞争。

生物技术及应用专业很多人认为,2000年是生物技术产业投资年。

人类基因测序的完成和公布,是科学史上的又一个里程碑,它令很多投盗者为之神魂颠倒。

2000年美国的生物技术产业股票市场新增300亿美元,这一数值大大超过前5年该产业股市投资的总和,生物技术的股票与其它科技行业股票异常高涨。

很多迹象表明,生物技术产业虽然历史不到30年,但正步入成熟期。

美国经济处于衰退中的2001年,生物技术产业仍吸收了150亿美元的投资,这是该产业历史上第二大的投资年。

投资者认为,生物技术公司,特别是那些专攻新药的生物技术公司和其合作的制药公司,在未来的5年中,将推出数百种一类新药。

生物技术在基因科学、蛋白质学、生物信息学、计算机辅助药物设计、DNA生物芯片和药物基因学等领域中的突破,使对疾病的攻克进入分子水平。

很多投资者认为,用生物技术方法开发新药将得到回报。

根据美国生物技术产业组织(BIO)的统计,1982—2000年间,大约有120个生物药进入市场;2001年有300个新药正在进行最后阶段的临床试验。

根据过去的经验,到2007年,美国食品与药物管理局(FDA)大约要批准其中的240个新药进入市场,从而使市场上的生物技术药翻2倍。

大多数生物技术新药是用于治疗心脏病、癌症、糖尿病和传染病的一类新药。

生物技术的显著应用不仅在健康行业,生物技术在其它产业中的研发投入也十分突出。

依靠生物技术,农业上用更少的土地生产更多的健康食品;制造业可以减少环境污染、节省能耗;工业可以利用再生资源生产原料,以保护环境。

生物技术产业的成熟除了体现在产品开发方面外,另一个主要标志是行业的现金储量。

2000年由于生物技术产业在社会上筹集了大量资本,大多数生物技术企业在2001年的资金情况很好。

根据Ernst & Young’s 2001年生物技术报告,美国上市的340家生物技术公司中,超过半数的公司现金储量可维持三年以上的运行,这为该行业今后的快速发展奠定了良好基础。

生物技术产业成熟的另一个标志是合并化。

资金雄厚的生物技术企业,如基因公司,正在兼并其它辅助性技术公司,从而形成综合性的生物制药公司,能够开发、生产和销售自己的产品。

这种兼并活动,不仅增加企业的产品种类和收入,同时也有助于提高整个行业的竞争力。

生物技术产业是新经济的主要推动力。

尽管最近生物技术产业的股值也缩水很大,但其过去所得多于现在所失。

在过去的一年中,纳斯达克生物技术指数下降了20%,但与前三年相比,该指数的增长仍接近100%。

在目前的熊市状态下,该指数的表现优于纳斯达克综合指数和道琼工业指数。

很多分析家认为,2002年生物和医药股将表现平平但健康发展,在今后的12至24个月中,生物股将再次起飞,新的生物技术产品将开始进入市场。

美国很多州政府支持生物技术产业的发展,陆续推出了不少经济发展计划以吸引生物技术企业。

例如,密西根州是美国十大生物技术州之一,州政府承诺要在生物技术产业领域进入全美前5名,拟投入10亿美元,建成密西根生命科学走廊。

目前该走廊已有300多家生物公司。

生物技术的现代技术现代生物技术一般包括基因工程、细胞工程、酶工程、发酵工程和蛋白质工程。

基因工程基因工程是指在基因水平上,按照人类的需要进行设计,然后按设计方案创建出具有某种新的性状的生物新品系,并能使之稳定地遗传给后代。

基因工程采用与工程设计十分类似的方法,明显地既具有理学的特点,同时也具有工程学的特点。

生物学家在了解遗传密码是RNA转录表达以后,还想从分子的水平去干预生物的遗传。

1973年,美国斯坦福大学的科恩教授,把两种质粒上不同的抗药基因"裁剪"下来,"拼接"在同一个质粒中。

当这种杂合质粒进入大肠杆菌后,这种大肠杆菌就能抵抗两种药物,且其后代都具有双重抗菌性,科恩的重组实验拉开了基因工程的大幕。

DNA重组技术是基因工程的核心技术。

重组,顾名思义,就是重新组合,即利用供体生物的遗传物质,或人工合成的基因,经过体外切割后与适当的载体连接起来,形成重组DNA分子,然后将重组DNA分子导入到受体细胞或受体生物构建转基因生物,该种生物就可以按人类事先设计好的蓝图表现出另外一种生物的某种性状。

1、DNA重组技术的物质基础(1)目的基因基因工程是一种有预期目的的创造性工作,它的原料就是目的基因。

所谓目的基因,是指通过人工方法获得的符合设计者要求的DNA片段,在适当条件下,目的基因将会以蛋白质的形式表达,从而实现设计者改造生物性状的目标。

(2)载体目的基因一般都不能直接进入另一种生物细胞,它需要与特定的载体结合,才能安全地进入到受体细胞中。

目前常用的载体有质粒、噬菌体和病毒。

质粒是在大多数细菌和某些真核生物的细胞中发现的一种环状DNA分子,它位于细胞质中。

许多质粒含有在某种环境下可能是必不可少的基因。

图4-25是不同构型的质粒。

噬菌体是专门感染细菌的一类病毒,由蛋白质外壳和中心的核酸组成。

在感染细菌时,噬菌体把DNA注入到细菌里,以此DNA为模板,复制DNA 分子,并合成蛋白质,最后组装成新的噬菌体。

当细菌死亡破裂后,大量的噬菌体被释放出来,去感染下一个目标。

图4-26,噬菌体侵染细菌的过程。

质粒、噬菌体和病毒的相似之处在于,它们都能把自己的DNA分子注入到宿主细胞中并保持DNA分子的完整,因而,它们成为运载目的基因的合适载体。

因此,基因工程中的载体实质上是一些特殊的DNA分子。

(3)工具酶基因工程需要有一套工具,以便从生物体中分离目的基因,然后选择适合的载体,将目的基因与载体连接起来。

DNA分子很小,其直径只有20埃(10-10米),基因工程实际上是一种“超级显微工程”,对DNA的切割、缝合与转运,必须有特殊的工具。

1968年,科学家第一次从大肠杆菌中提取出了限制性内切酶。

限制性内切酶最大的特点是专一性强,能够在DNA上识别特定的核苷酸序列,并在特定切点上切割DNA分子。

70年代以来,人们已经分离提取了400多种限制性内切酶。

有了它,人们就可以随心所欲地进行DNA分子长链切割了。

表4-3是一些限制性内切酶的识别位点1976年,5个实验室的科学家几乎同时发现并提取出一种酶,作DNA 连接酶。

从此,DNA连接酶就成了“粘合”基因的“分子粘合剂”。

1、 DNA重组技术的一般操作步骤一个典型的DNA重组包括五个步骤:(1)目的基因的获取目前,获取目的基因的方法主要有三种:反向转录法、从细胞基因组直接分离法和人工合成法。

反向转录法是利用mRNA反转录获得目的基因的方法。

现在用这种方法人们已先后合成了家兔、鸭和人的珠蛋白基因、羽毛角蛋白基因等。

从细胞基因组中直接分离目的基因常用"鸟枪法",因为这种方法犹如用散弹打鸟,所以又称"散弹枪法"。

相关主题