当前位置:文档之家› 自动控制原理重要公式

自动控制原理重要公式

A.阶跃函数 斜坡函数 抛物线函数 脉冲函数 正弦函数
B.典型环节的传递函数 比例环节 惯性环节(非周期环节) 积分环节
微分环节 二阶振荡环节(二阶惯性环节) 延迟环节 C.环节间的连接
串联
并联
反馈 开环传递函数=
前向通道传递函数=
负反馈闭环传递函数
正反馈闭环传递函数
D.梅逊增益公式
E.劳斯判据 劳斯表中第一列所有元素均大于零 s n a 0 a 2 a 4 a 6 …… s n-1 a 1 a 3 a 5 a 7 ……
s n-2 b 1 b 2 b 3 b 4 …… s n-3
c 1 c 2 c 3 c 4 …… … … …
s 2 f 1 f 2
s 1 g 1 s 0 h 1
,,,,,,14171313151212131117
16
03151402131201b b b a a c b b b a a c b b b a a c a a a a a b a a a a a b a a a a a b -=-=-=-=-=-=
劳斯表中某一行的第一个元素为零而该行其它元素不为零,ε→0; 劳斯表中某一行的元素全为零。

P(s)=2s 4+6s 2-8。

F.赫尔维茨判据 特征方程式的所有系数均大于零。

⎩⎨⎧≥<=0
0)(t A t t r ⎩⎨⎧≥<=00
0)(t At t t r ⎪⎩⎪⎨⎧≥<=02100)(2t At t t r ⎪⎩⎪⎨⎧>≤≤<=εε
t t z A
t t r 0000)(⎩⎨
⎧≥<=0sin 00)(t t A t t r ωK
s R s C s G ==)()()(1
)()()(+==Ts K s R s C s G s
T s R s C s G i 1)()()(==s
T s R s C s G d ==)()()(222
2)(n n n
s s K s G ωζωω++=s
e s R s C s G τ-==)()
()()()()( )
()
()()()()()()()(211121s G s G s G s X s C s X s X s R s X s R s C s G n n =⋅==
-)()()( )()
()()()()()(2121s G s G s G s R s C s C s C s R s C s G n n +++=+++== )
()()()
(s H s G s E s B =)
()()
(s G s E s C =)()(1)
()()()(s H s G s G s R s C s +==Φ)
()(1)()()()(s H s G s G s R s C s -==Φ∆
∆=∑
k
k P T
G.误差传递函数
扰动信号的误差传递函数
H.静态误差系数
单位 输入形式 稳态误差e ss 0型 Ⅱ型 Ⅲ型 阶跃1(t) 1/1+Kp 0 0 斜坡t ·1(t) ∞ 1/Kv 0 加速度0.5t 2·1﹙t ﹚
∞ ∞ 1/Ka I.二阶系统的时域响应: 其闭环传递函数为 或 系统的特征方程为
2)(22
=++=n
n s s s D ωζω
特征根为
1
,221`-±-=ζωζωn n s
上升时间t r
其中 峰值时间t p
最大超调量M p
调整时间t s
a.误差带范围为 ±5%
b.误差带范围为± 2%
振荡次数N
J.频率特性:
还可表示为:G (jω)=p (ω)+jθ(ω) p (ω)——为G (jω)的实部,称为实频特性; θ(ω)——为G (jω)的虚部,称为虚频特性。

显然有:
K.典型环节频率特性: 1. 积分环节 积分环节的传递函数: 频率特性:
幅频特性: 相频特性: 对数幅频特性: 2. 惯性环节
惯性环节的传递函数: 频率特性:
幅频特性:
相频特性:
实频特性: 虚频特性: 对数幅频特性:
)
()()(ωωωj R j C R C j G ss =
=⋅⋅
⎪⎪⎪
⎭⎪⎪⎪⎬⎫
=+===)()()()()()()(sin )()()(cos )()(2
2ωωθωϕωθωωωϕωωθωϕωωp arctg
p A A A p s
s G 1
)(=2
11)(π
ω
ωωj e j j G -==ωω1
)(=A 2)(π
ωϕ-=ωωωlg 20)(lg 20)(-==A L 11)(+=Ts s G
T jarctg e T T j j G ωωωω⋅-+=+=2)(1111)(2222111T T j T ωωω+-+=2211)(T A ωω+=
T
arctg ωωϕ-=)(2211)(T p ωω+=
2
21)(T T ωω
ωθ+-=221lg 20)(lg 20)(T A L ωωω+-==2222)()(n n n
s s s R s C ωζωω++=1
21)()(2
2++=Ts s T s R s C ζ2
1ζωβ
πωβπ--=-=
n d r t ζζβ2
1-=arctg 2
1ζωπ
ωπ-==n d p t %1001exp )()()(2⨯⎪⎪⎭⎫ ⎝⎛--=∞∞-=ζζπh h t h M p p n
s t ζω3
=
n
s t ζω4
=
π
ωωπ2/2s d d s d s t t T t N ===
对数相频特性: 3. 微分环节
纯微分环节的传递函数G (s )=s
频率特性: 幅频特性: 相频特性: 对数幅频特性: 4. 二阶振荡环节
二阶振荡环节的传递函数:
频率特性:
幅频特性:
相频特性:
实频特性:
虚频特性: 对数幅频特性: 5. 比例环节 比例环节的传递函数: G (s )=K
频率特性: 幅频特性: 相频特性: 对数幅频特性: 6. 滞后环节 滞后环节的传递函数: 式中 —— 滞后时间
频率特性: 幅频特性: 相频特性: 对数幅频特性: L.增益裕量: 式中ωg 满足下式∠G (j ωg ) H (j ωg )= -180° 增益裕量用分贝数来表示:
Kg =-20lg|G (j ωg )H (j ωg )|dB
相角裕量:定义:使系统达到临界稳定状态,尚可增加的滞后相角 ,称为系统的相角裕度或相角裕量,表示为 M.由开环频率特性求取闭环频率特性
开环传递函数G (s ),系统的闭环传递函数 系统的闭环频率特性
N.闭环频域性能指标与时域性能指标 的关系
二阶系统的闭环传递函数为 系统的闭环频率特性为
系统的闭环幅频特性为
系统的闭环相频特性为 二阶系统的超调量Mp 谐振峰值Mr
由此可看出,谐振峰值Mr 仅与阻尼比ζ有关,超调量Mp 也仅取决于阻尼比 ζ 谐振频率ωr 与峰值时间tp 的关系
由此可看出,当 ζ为常数时,谐振频率 ωr 与峰值时间 tp 成反比,ωr 值愈大,tp 愈小,表示系统时间响应愈快. 低频段对数幅频特性 T arctg ωωϕ-=)(2
)(πωωωj
e j j G ==ωω=)(A 2
)(π
ωϕ=
ωωωlg 20)(lg 20)(==A L 121
)(2
2++=Ts s T s G ζ1
2)(1
)(2++=
ωζωωT j T j j G 2
222)2()1(1
)(T T A ζωωω+-=2212)(ωζωωϕ
T T arctg --=2
2222
2)2()1(1)(T T T p ζωωωω+--=
2
222)2()1(2)(T T T ζωωω
ζωθ+--=2222)2()1(lg 20)(lg 20)(T T A L
ζωωωω+--==K j G =)(ωK A =)(ω0)(=ωϕK A L lg 20)(lg 20)(==ωωs
e
s G τ-=)(τωτωj e
j G -=)(1)(=ωA )(3.57)()(C rad ωττωωϕ-=-=dB
A L 0)(lg 20)(==ωω)()(1g g g j H j G K ωω=
)ψ(ωγc 180+︒=)(1)()()()(s G s G s R s C s M +==)
(1)()()()(ωωωωωj G j G j R j C j M +==222
2)(n
n n s s s ωζωωφ++=2
222)()(n n n j j j ωωζωωωωφ++=(ω
M 2
22)(ω
ωω
ζωωϕ--=n n arctg %1002
1/⨯=--ζζπe M p 2
121ζζ-=
r M 2
2
121ζζπω--=r p t ω
υωlg 20lg 20)(-=K L d。

相关主题