当前位置:文档之家› 信号产生与检测电路

信号产生与检测电路

3.1信号产生与检测电路的组成信号产生与检测电路的组成框图如图3.1所示。

6图3.1 信号产生与检测电路的组成框图信号产生与检测电路的主要技术指标和功能如下:(1)网络接口:100Mb/s,全双工,支持TCP/IP协议;(2)串行接口:1个RS232接口,1个RS485接口,1个RS485转接接口,波特率最高115200B,数据位8位,停止位1位,校验位无;(3)IIC总线:连接信号处理器、主控制器、码产生器、方位控制板插座,经开关控制连接6片PCF8574;(4)高速DAC:2路,位数14位,最大采样速率210 MSP;(5)串行DAC:6路,串行控制接口SPI;(6)输入输出数字信号电平标准:5V CMOS/TTL电平;(7)检测插座:为9种电路板提供检测插座;(8)激励信号:为9种电路板诊断提供电源和激励信号;(9)检测信号:被测信号通过信号诊断钩引入信号产生与检测电路,一部分由FPGA或ARM检测,一部分经模拟开关选通输出至数据采集器检测。

信号产生与检测电路实现的功能见表3.1。

表3.1 信号产生与检测电路的功能3.2主处理芯片介绍3.2.1 FPGA(EP3C25)FPGA模块使用的是EP3C25系统,该系统属于FPGA-Cyclone III系列。

Altera公司于2007年07月宣布开始发售业界的首款65nm低成本FPGA-Cyclone III系列,Cyclone III FPGA含有5~120KB逻辑单元(LE),288个数字信号处理(DSP)乘法器,存储器达到4Mb。

在可编程逻辑发展历史中,Cyclone III FPGA比其他低成本FPGA系列能够支持实现更多的应用[5]。

对于软件无线电(SDR),Cyclone III系列在单个器件中集成了所需的逻辑、存储器和DSP乘法器等信号处理功能,成本非常低;与前一代产品和竞争产品相比,Cyclone III FPGA的低功耗、高密度和充足的DSP功能使设计人员可以在大量新的无线应用中使用低成本系列产品;在视频和图像处理应用中,Cyclone III FPGA恰当地结合了DSP乘法器、存储器和逻辑资源;Cyclone III器件针对显示应用进行了优化,是第一款能够满足所有1080p HDTV性能需求的低成本FPGA。

3.2.2 ARM(AT91SAM9G20)ARM模块使用的是AT91SAM9G20系统。

AT91SAM9G20微处理器是由ATMEL公司生产的,这款400 MHz 的微处理器具有ATMEL先进的外设DMA 和分布式存储器架构,连同6层总线矩阵,可实现存储器、外设和外部接口之间的多重数据同时传送,而无需耗费CPU的时钟周期。

其外部总线接口 (EBI) 的时钟频率为133 MHz,用于片外存储器的高速数据传送。

这种架构为器件提供了内部和外部的高数据带宽,能满足许多嵌入式网络应用的要求。

AT91SAM9G20联网和通信的要求通过10/100M BT 以太网MAC、7个USART接口、12M bps USB 全速双端口主机和器件端口、双SPI接口、SSC接口和双线接口(TWI) 来进行。

此外,还有一个完全集成的图像传感器接口 (ISI),能够满足图像感应的要求。

同时,在所有外设启动的400 MHz全功率模式下,AT91SAM9G20的功耗仅为80mW。

而且这款器件还具有 4 种降低功耗的模式,包括在后备模式中主电源被关断,而器件的功耗非常低 (9mW),能够延长电池供电的时间。

AT91SAM9G20不但有效地结合了高性能和低功耗特性,而且价格非常吸引,这些优点使其在市场中得到广泛接受。

3.3 ARM系统电路设计ARM系统电路包括ARM处理器AT91SAM9G20、供电电路、复位电路、时钟电路、存储电路、网络接口电路和串行接口电路。

3.3.1 AT91SAM9G20AT91SAM9G20集成了外部存储控制器(SDRAM控制器和片选逻辑),支持Data Flash、Nand Flash和Nor Flash系统引导;有1路主USB和1路从USB,主USB可同时连接两路USB设备;内部集成锁相环;96个可编程的I/O口和31路外部中断;具有日历功能的RTC和6路TC计时器;支持串口USART,同步串口SSC 等多种通信接口;并集成了10/100Mbps双以太网控制器。

AT91SAM9G20的组成框图如图3.2所示。

图3.2 AT91SAM9G20的组成框图3.3.2供电电路供电电路中使用了大量的滤波电容,使输出的直流电源更平滑。

同时,每个芯片的电源引脚和地之间都连接了这样的滤波电容,以防止电源噪声影响元件正常工作。

AT91SAM9G20的供电范围如表3.2所示:电源域范围(V) 驱动VDDCORE 0.9-1.1 内核VDDBU 0.9-1.1 备份VDDPLL 0.9-1.1 锁相环VDDOSC 1.65-3.6 振荡器供电电路设计采用1V和3.3V两种电源,核电压为1V,其余为3.3V,上电顺序如图3.3所示。

供电电路中1V电压由5V电压经过DC-DC芯片TPS60500DGSR 变换得到,3.3V电压由5V电压经过线性稳压芯片LT1963AEQ-3.3得到,1V电压的上电顺序由比较器LM293和三极管IRLML6402控制。

图3.4显示了DC-DC芯片TPS60500DGSR将5V转换为1V的过程,图3.5显示了稳压芯片LT1963AEQ将5V 电压转换为3.3V的过程。

图3.3 上电顺序时序图图3.4 1V供电电路图3.5 3.3V供电电路ARM供电电路的滤波电容如图3.6所示,图3.6 ARM的滤波电容3.3.3复位电路复位电路主要完成系统的上电复位和系统在运行时用户的按键复位功能。

在AT91SAM9G20中,提供系统复位功能的是nRST管脚, nRST管脚上的低电平有效使得AT91SAM9G20复位,复位电路如图3.7所示。

图3.7 复位电路3.3.4时钟电路AT91SAM9G20正常工作需要提供启动时钟的慢时钟和正常工作时钟的主时钟2个时钟源。

AT91SAM9G20时钟发生器内置慢时钟振荡器、主振荡器、两个PLL 及分频器模块,组成框图如图3.8所示。

从硬件设计上看,AT91SAM9G20需要外接两个晶体,如图3.9和图3.10所示,在AT91SAM9G20与慢时钟振荡器对应的脚XIN32、XOUT32之间接32.768KHz的晶体,作为AT91SAM9G20的慢时钟;在AT91SAM9G20与主振荡器对应的脚XIN、XOUT之间接18.432MHz的晶体,作为AT91SAM9G20正常工作的各种时钟源。

外部晶体的振荡频率最高只有18.432MHz,但是AT91SAM9G20处理器时钟通过编程可达400MHz,这是因为AT91SAM9G20内部有两个锁相环,称为PLLA和PLLB,其中,锁相环A输出400-800MHz的时钟,锁相环B输出100MHz的时钟。

图3.8 时钟发生器的组成框图图3.9 接外部晶振作慢时钟图3.10 接外部晶振作时钟源锁相环是一种反馈电路,其作用是使得电路上的时钟和某一外部时钟的相位同步。

PLL通过比较外部信号的相位和由压控晶振(VCXO)的相位来实现同步的,在比较的过程中,锁相环电路会不断根据外部信号的相位来调整本地晶振的时钟相位,直到两个信号的相位同步。

在数据采集系统中,锁相环是一种非常有用的同步技术,因为通过锁相环,可以使得不同的数据采集板卡共享同一个采样时钟。

因此,所有板卡上各自的本地80MHz和20MHz时基的相位都是同步的,从而采样时钟也是同步的。

因为每块板卡的采样时钟都是同步的,所以都能严格地在同一时刻进行数据采集。

3.3.5存储电路存储电路分为FLASH存储器电路和SDRAM存储器电路。

1. FLASH存储器电路由于微控制器运行的代码需要存储在非易失的存储介质中,以确保掉电后程序也不丢失。

而AT91SAM9G20只有64K字节片上ROM,这就对片内存储的代码大小提出了限制,而实际嵌入式系统的代码大小一般都超过64K。

因此在实际的硬件设计中,会采用外扩的FLASH存储器存放程序代码,目前用的非易失的存储介质通常是FLASH。

FLASH 即为闪存,有许多种种类,从结构上分主要有NandFlash、NorFlash 等,这些都是目前主流的类型,在嵌入式系统中,一般用FLASH来存放需要永久保存的程序和数据,掉电后不会丢失。

而用SDRAM来存放系统运行时的数据,掉电后则消失。

综合各方面的性能,NandFlash更优,它拥有较快的擦除和写入速度(大多数的写入操作需要先进行擦除操作);在更低的成本上获得更大的容量;它的每个块最大擦写次数是100万次,远高于NorFlash的10万次,拥有更长的使用寿命;并且NandFlash的擦除单元(NorFlash的擦出块单元为64~128KB,NandFlash 的擦除块单元为8~32KB)更小,相应的擦除电路更简单。

但是在NandFlash中,位反转的问题更加严重,在使用NandFlash时必须同时使用EDC/ECC算法来确保其可靠性,并且NandFlash器件中的坏块是随机分布的,如果通过可靠的方法不能进行坏块扫描,则将导致较高的故障率。

与此同时,NorFlash闪存的连接方式类似于其他存储器,并可以直接运行代码,而不像NandFlash器件上始终必须进行虚拟映射。

并且在NorFlash器件上运行代码不需要任何的软件支持,在进行写入和擦除操作时,NorFlash器件所需要的MTD(闪存技术驱动程序)相对较少,驱动程序还可用于对DiskOnChip 产品进行仿零点和闪存管理,包括纠错、坏块处理和损耗平衡。

虽然NandFlash的性能较好,但是Nor Flash 带有SRAM接口,有足够的地址引脚,可以很容易的对存储器内部的存储单元进行直接寻址。

在实际的系统中,可以根据需要选择ARM处理器与NorFlash的连接方式。

NorFlash的操作最更加方便,电路也更为简易易懂。

此外,DataFlash也是目前主流的一种闪存类型。

DataFlash是Atmel公司新推出的大容量串行Flash存储器产品,具有体积小,容量大,功耗低和硬件接口简单的特点。

它是Atmel私有的接口,与兼容SPI标准。

信息从DataFlash芯片被写并且读使用所有微型控制器,非常易于构成微型测量系统。

本次设计中,这三种Flash存储我们使用DataFlash,电路图如3.11所示,采用的都是并行存储方式。

图3.11 FLASH存储器2.SDRAM存储器电路AT91SAM9G20只有两个16 K字节片上SRAM,而一般程序运行时需要更大的内存,因此在实际的硬件设计中,需要外扩存储空间。

相关主题