1 引言钻孔机械设备主要包括气动凿岩机、液压凿岩机、凿岩钻车、潜孔钻机和牙轮钻机。
潜孔钻机是由紧随钻头一起潜入孔底的冲击器将冲击能经钻头作用在矿岩上,加之回转机构的作用,对矿岩产生冲击破碎从而完成炮孔钻凿的一种钻孔设备。
CLQ80A露天钻机[1]由底盘、钻臂、推进器、凿岩机、液压和气压系统等组成,采用履带式行走;主要以压缩空气为动力,但钻臂定位采用气力驱动液压系统,工作平稳可靠;利用气压凿岩机凿孔,风马达一链条传动推进,主要用于露天石方炮孔的钻凿。
能在倾斜不平的露天工作曲上钻凿水平、垂直和倾斜的炮孔,孔深可达30m。
炮眼直径80-120mm。
整个露天钻机由滑架、回转机、车架、钻臂、行走减速机构以及液压气压装置等组成。
其中钻臂是重要的部件,上接滑架,下连车架。
钻臂主要由钻臂座,桁架体,桁架水平油缸,桁架倾斜油缸,滑架倾斜油缸,桁架旋转接头,花键轴等部件组成;其中钻臂座及倾斜油缸安装在车架上,滑架旋转接头装在花键轴上,一端联接滑架倾斜油缸,当滑架倾斜油缸动作时,带动滑架旋转接头转动,从而带动花键转动,引起滑架上下俯仰动作。
桁架倾斜油缸是主要受力者,通过它的液压杆的伸缩可以使桁架体上下俯仰动作;桁架水平油缸控制桁架体左右动作。
各个油缸两端均采用铰接方式联接。
工作时,桁架体在三维空间里运动,上下俯仰角度共有70º,左右摆动共有90º,设计时须进行其运动分析,以确定各个铰点的位置,构件长度,液压杆总长等数据。
由于在工作过程中钻头所受力的作用线并不通过花键轴心线,所以将产生附加力矩,并且在最恶劣的工况下该力对桁架体及各个油缸及钻臂座产生很大的作用力,所以须进行受力分析,分析各个构件的最大受力位置,计算其最大受力或弯矩,然后进行设计和校核。
2 基本数据和参数2.1设计依据及主要技术指标:1.钻孔直径(mm)80-1202.钻孔深度(m)下向20 水平不小于30 3.钻凿水平孔最高(mm) 34004.钻凿水平孔最低(横位)(mm) 1855.钻凿水平向下孔与地面成角度(°) 0-906.与车体角度(°) 左907.有效推进行程(mm) 30008.推进器补偿长度(mm) 10009.滑道俯仰角度(°) 上下共9010.滑道旋转角度(°) 左90 右4511.钻臂俯仰角度(°) 上下共7012.旋转角度(°) 左右各453 模型建立3.1 已知条件:钻臂俯仰角度α= -25°~ 45°钻臂水平旋转角度β=-45°~ 45°滑架受力变化范围θ= -45°~ 45°滑架摆动角度范围ψ= -90°~ 45°3.2模型建立(如图3-1)4 钻臂运动分析及其各铰点位置确定4.1 已知条件:钻臂俯仰角度α= -25°~ 45°钻臂水平旋转角度β=-45°~ 45°滑架受力变化范围θ= -45°~ 45°滑架摆动角度范围 ψ= -90° ~ 45°图3-1 基本模型建立 4.2 初步设定初步设定: OA 长a=500 mm ,OB 长b=500 mm ,OC 长c=1600 mm ,CD 长d=400 mm ,DE 长e=272 mm4.3 分析计算设:下支撑油缸及杆总长 1L (mm),支撑油缸及杆总长2L (mm), 上支撑油缸及杆总长4L (mm))90cos(2221α+⨯⨯⨯-+=c b b c L (4—1) )90cos(2222β+⨯⨯⨯-+=c a c a L (4—2))2arccos(12212L b c L b ⨯⨯-+=ϕ (4—3))sin arcsin(21L c αγ⨯= (4—4))cos cos arctan(tan 2βαβγ⨯⨯+=c a (4—5)))90cos(arccos(cos 3βαγ+⋅= (4—6)运算并制成表格如下(表4-1):表4-1,钻臂运动极限位置由表中数据可观察到: max 1L =1985.2 mm , min 1L =1460.5 mmm ax 2L =1985.2 mm , min 2L =1295.7 mm由钻臂初设计可使: m ax 4L =772 mm , min 4L =428 mm 4.4运动分析:在平面OBD 上:e r a V V V += (4—7)图4-1 钻臂俯仰运动分析()αω+︒=90sin 1cb vL (4—8)()αω+︒==90sin 11b vL c V (4—9)在平面OAC 上:图4-2 钻臂水平运动分析32sin γωca vL =(4—10)322sin γa vL V =(4—11)当α≠0°,β≠0°时:()⎪⎪⎭⎫⎝⎛-+︒=334sin sin cos cos 90cos arccos γαγαβγ (4—12) 当α=0°,β=0°时: 4γ=90°()4212221cos 2γV V V VV ++=(4—13) 当α=45°,β=45°时:4γ=54.7°()()=+︒⨯⨯=+︒=4590sin 5005.02.198590sin 11αb v L V 2.8 (m/min )322sin γa v L V =2.2120sin 5005.01900=︒⨯⨯= (m/min )()4212221cos 2γV V V VV ++=()4.47.54cos 2.28.222.28.222=︒⨯⨯++=(m/min )5 钻臂及其安装座设计及加工工艺5.1力学分析5.1.1力学模型建立(如图5-1):在平面ODE 上:()()()ψαθαθsin cos cos 3-+=+-⋅⋅d c F L F e F ac (5—1)在平面OBC 上:∆=F M(5—2) ))90cos(arccos(cos 3βαγ+⋅= (5—3)233sin L c a L γ⋅⋅=(5—4)()()αβγγαϕαθsin cos cos cos sin sin sin 21⋅⋅+⋅⋅+-⋅+⋅c F c F d c F ac bc αβγγsin sin sin cos 21⋅⋅+c F ac +θcos 1Ge αγαϕcos sin cos cos 1⋅⋅+⋅⋅+=c F c F M ac bc (5—5)图5-1 受力分析1sin cos sin γϕθac bc oz F F F F ++= (5—6)βγγϕβψθcos cos cos sin cos cos cos 21ac bc oy F F F F ++=(5—7)式中:ac F ——侧支撑油缸及杆所受力(设为压力,单位N ); bc F ——下支撑油缸及杆所受力(N ); ox F ——钻臂安装座在x 轴向所受力(N ); oy F ——钻臂安装座在y 轴向所受力(N );oz F ——钻臂安装座在z 轴向所受力(N ); o F ——钻臂安装座所受的合力(N );3L ——原点O 到Fac 的作用线的距离(mm );F —— 钻头所受最大力(N );∆ —— 钻头作用线与花键中心线之间的距离(mm ); θ —— 钻头所受力F 与水平面之间的夹角(°);e —— 滑架作用于花键的力与钻臂轴线之间的距离(mm );1e —— 滑架重心到花键轴线的距离(mm );ψ—— 钻头所受力F 与OBD 平面的夹角(°);G —— 滑架自重(kg);α,β,1γ,2γ,3γ,ϕ,θ,ψ详见图5-1示: 已知F=10000N,e=272mm ,c=1600mm ,∆=360mmα =-25°~ 45°β =-45°~ 45°θ =-45°~ 45°ψ =-90°~ 45°5.1.2 求 解()()()3cos sin cos L e d c F F ac ψψαθ++-=()()αϕαϕαγαβγγαβγγsin sin cos cos cos sin sin sin sin cos sin cos cos cos 12121--+=c c F F ac bc()()()αϕαϕθαθsin sin cos cos cos sin 1--+-++c MGe d c F1sin cos sin γϕθac bc oz F F F F +-=()βγγϕθβcoc F F F F ac bc oy 21cos cos sin cos cos +-=βtan oy ox F F =()222ozoy ox o F F FF ++=由于α,β,θ是在一定的范围内变化,所以该方程组有无穷多解;而我们要找的是其中最大解,用来计算各构件所承受的最大力,然后据此分析计算液压系统,选择液压缸,以及计算最大弯矩,校核强度,等等。
若用手工计算,不仅计算量庞大,计算复杂,而且容易出错,所以利用Turbo C 编程解决。
程序如下见附录1。
经计算:Max =bc F -90818 N此时:ac F =-20651.6 N ox F =-22429.9 N ,oy F =31720.7 N ,oz F =-55560.2 N ,o F =-67795.5 N ,1L =1985.2 mm ,2L =1417.7 mmθ=-15.0º, ψ=-82.0º, α=45.0º, β=-45.0º, ϕ=34.7º, 3γ=60.0º,Max o F =91619.4 N此时:ac F =20442.0 N =bc F -78908.0 N ox F =29198.6 N ,oy F =42033.0 N ,oz F =75991.9 N ,o F =94381.6 N , 1L =1985.2 mm ,2L =1896.3 mmθ =-6.0º, ψ=44º, α=45.0º, β=-44.0º, ϕ=34.7º, 3γ=119.4ºMax ac F = -70835.9 N此时:=bc F -5657.5 N ,ox F =-10876.3 N ,oy F =-15381.4 N ,oz F =1687.5 N ,o F =18913.5 N ,1L =1676.3 mm ,2L =1985.2 mmθ=0.0º, ψ=-82º, α=0.0º, β=45.0º, ϕ=72.6º, 3γ=135.0º关于 Max cd F 的计算:Max cd F =()RF Ge ∆+θcos 1 (5—8)其中,由分析可知,当θ=45º,且花键轴线与桁架旋转铰接头的连线与滑架倾斜油缸垂直,此时滑架倾斜油缸受力最大:Max cd F ()RF Ge ∆+=θcos 11723601000045cos 1805000⨯+⨯⨯=6.24629=N5.2强度计算5.2.1 桁架臂弯矩计算:在平面OBD 上:(以D 点为原点建立坐标,X 轴正向向右,下同) DC 段:()()αθ--=sin Fx M x M OC 段:()()()αβαsin cos cos x d c F x d c F x M oy oz -+--+=在平面OAC 内:,DC 段:()()ψαθψαθsin cos cos cos ---=Fd Fe MOC 段:()()()()cL d x F Fd Fe x M ac 3sin cos cos cos -+---=ψαθψαθ 在d x =处,平面OBD 内,=左M ()αθ--sin Fd M (5—10) =右M αβαsin cos cos c F c F oy oz -()右左,M M M m ax 1=在d x =处,平面OBD 内,=左M ()()ψαθψαθsin cos cos cos ---Fd Fe=右M ()()ψαθψαθsin cos cos cos ---Fd Fe()右左,M M M m ax 1== ()()ψαθψαθsin cos cos cos ---Fd Fe两平面夹角为 :4γ所以 总弯矩 ()4212221cos 2γM M M M M -+= (5—11) 由于4γ的计算涉及到空间立体几何的知识,计算比较麻烦;而且总弯矩的计算也很烦琐,故可采用Turbo C 编程求解,程序见附录2。