当前位置:文档之家› 短波的天波传播衰减预测模型

短波的天波传播衰减预测模型

短波的天波传播衰减预测模型2010-12-09 14:36:31 来源:维库开发网关键字:短波天波传播衰减预测模型ITU-R P.533-7建立短波天波传播衰减预测的计算模型,为保障短波通信电路的可靠性提供参考依据,建立的方法主要依据ITU-R P.533-7。

首先进行传播路径的判别,进而进行频率预测,最后建立传播衰减计算模型并与文献结果进行比对,两者有较好的一致性。

频率预测部分摒弃了ITU-R P.533-7中的全球预测方法,采用了对我国来说较为准确的亚大方法。

天波是指经电离层反射而传播的波,亦称电离层波。

电离层是太阳辐射构成的,一年四季乃至每时每刻太阳照射的强弱都在变化,因此各地电离层的情况各有所异。

电离层的电离条件不断变化,使通过天波传播的短波信道并不稳定,它实质上是一种时变的色散信道。

短波信道的路径衰耗、时延散布、大气噪声和干扰等均随时间、地点、季节、昼夜以及频率的不同而不断地变化。

因此,在短波通信中,为了保障通信可靠性,有必要对每一个具体的通信电路进行天波频率及传播衰减的预测。

本文就是在ITU-R P.533-7推荐建议的基础上建立了短波天波传播衰减的计算模型,并将计算结果与参考文献比对后进行了软件仿真实现。

1 天波传播路径的判别短波天波主要靠电离层的反射进行远距离的传播,电离层是分层的,其范围大约从地球表面上空50 km处一直延伸到2 000 km左右,按照电子浓度的分布情况,电离层通常分3层,由下向上分别称为D层、E层和F层。

白天,F层还可细分为F1层和F2层,F2层位于地面上空220 km以上,对短波通信起主要作用。

短波天波传播路径主要依靠E层及F2层的反射来确定。

在短波通信的收发点位置确定以后,依靠E层及F2层反射的最少跳数由式(1)确定。

2 传播路径上各反射点的频率预测欲建立可靠的短波通信,不能在短波频段内任意选择一个频率。

在给定距离和方向的路径上,在一定时间内短波通信只能用一个有限的频带,对于长时间的短波通信电路,通常需要几种频率以便在不同的时间内供选用。

当考虑了最主要的影响天波传播的传播条件后,可以对短波通信的工作频率加以预测。

由于天波传播条件随太阳黑子数目的多少而变化,因此可以把太阳黑子数作为短波传播的重要变化因素,以确定太阳黑子最大值及最小值条件下经E层和F2层传播的“极限频率曲线”。

极限频率曲线表示了经E层和F2层反射的频率在一天中24小时的变化曲线,用这些曲线可以确定正常传播条件下的最高可用工作频带(即MUF)。

工作频率的选择一般应不高于MUF,当依靠F2层反射时,最佳工作频率选择为0.85MUF,当依靠E层反射时,最佳工作频率选择为MUF,这是由于E层比较稳定。

2.1 E层最大可用频率预测E层最大可用频率按参考文献[1]提供的计算方法进行预测,其计算公式如下:2.2 F2层最大可用频率预测预测F2层的最大可用频率需要进行两个重要参数的预测,即F2层的临界频率f0F2及F2层3 000 km传输因子M(3 000)F2的预测,此两个参数的计算模型(对于我国一般采用亚大方法模型)的经验系数由电离层探测的数据进行统计得到。

F2层最大可用频率由下式确定:2.3 E层最大截止频率预测为了判断是依靠E层还是F2层传播,需进行E层最大截止频率的计算,当工作频率小于E层最大截止频率时,认为该频率因被E层截止而不存在F2层传播模式,E层最大截止频率的计算公式为:3 天波传播衰减的计算方法3.1 任意一条传播路径接收点场强计算如果认为短波系统是闭合传输系统,由发射机输出开始,到接收机输入结束,则线路总损耗为自由空间损耗、电离层损耗、地面反射损耗、高于MUF损耗、极区损耗及其他损耗构成。

(1)任意一条短波天波传播路径损耗计算表达式为:(2) 则任意一条短波天波传播路径的接收场强为:3.2 接收点多径合成场强计算各接收点的场强进行功率叠加, 可以计算求得等效的合成场强, 其计算公式为:3.3 传播衰减计算天波传播衰减的计算方法是用自由空间传播的信号场强减去接收点合成场强,即:4 结果比对为了验证模型计算的准确度,将本文的天波传播衰减计算软件与参考文献[4]中提供的结果进行了比对。

由于参考文献[4]中没有各路径的合成场强及总衰减的的数据,因此主要对计算过程中的主要数据进行比较,计算过程中各参数计算结果的一致性,如频率、各路径损耗计算结果的吻合,完全可以保障两者最终衰减计算结果的一致性。

参考文献[4]中列举的一条具体电路:发射点经纬度(112.78,35.08),接收点经纬度(113.99,33.08),时间为2004年5月11时,收发射天线增益3.373 7 dB,发射功率10 kW,工作频率选择7 MHz,太阳黑子数量40。

模型计算与文献比对的结果如表1所示。

由于工作频率7 MHz大于E层的遮蔽频率,所以电波穿透E层,依靠F2电离层来进行反射,故只对F2层各模式的损耗进行计算,模型计算与文献比对的结果如表2所示。

本文利用参考文献[2]建议标准对7 000 km以内的短波天波传播衰减建立了计算模型,模型仿真结果与参考文献[2]的计算结果较为一致。

天波计算过程表明,频率预测的准确度与电离层探测归纳的经验系数有着很大的关系。

另外,本文计算的衰减是相对于自由空间的衰减,如欲计算基本传输损耗,还要加上自由空间的损耗。

天线基本知识及应用无线传播损耗计算2011-04-10 21:33天线基本知识及应用--链路及空间无线传播损耗计算1 链路预算上行和下行链路都有自己的发射功率损耗和路径衰落。

在蜂窝通信中,为了确定有效覆盖范围,必须确定最大路径衰落、或其他限制因数。

在上行链路,从移动台到基站的限制因数是基站的接受灵敏度。

对下行链路来说,从基站到移动台的主要限制因数是基站的发射功率。

通过优化上下行之间的平衡关系,能够使小区覆盖半径内,有较好的通信质量。

一般是通过利用基站资源,改善网络中每个小区的链路平衡(上行或下行),从而使系统工作在最佳状态。

最终也可以促使切换和呼叫建立期间,移动通话性能更好。

上下行链路平衡的计算。

对于实现双向通信的GSM系统来说,上下行链路平衡是十分重要的,是保证在两个方向上具有同等的话务量和通信质量的主要因素,也关系到小区的实际覆盖范围。

下行链路(DownLink)是指基站发,移动台接收的链路。

上行链路(UpLink)是指移动台发,基站接收的链路。

上下行链路平衡的算法如下:下行链路(用dB值表示):PinMS = PoutBTS - LduplBTS - LpBTS + GaBTS + Cori + GaMS + GdMS - LslantBTS - LPdown 式中:PinMS 为移动台接收到的功率;PoutBTS为BTS的输出功率;LduplBTS为合路器、双工器等的损耗;LpBTS为BTS的天线的馈缆、跳线、接头等损耗;GaBTS为基站发射天线的增益;Cori为基站天线的方向系数;GaMS为移动台接收天线的增益;GdMS为移动台接收天线的分集增益;LslantBTS为双极化天线的极化损耗;LPdown为下行路径损耗;上行链路(用dB值表示):PinBTS = PoutMS - LduplBTS - LpBTS + GaBTS + Cori + GaMS + GdBTS -LPup +[Gta] 式中:PinBTS为基站接收到的功率;PoutMS为移动台的输出功率;LduplBTS为合路器、双工器等的损耗;LpBTS为BTS的天线的馈缆、跳线、接头等损耗;GaBTS为基站接收天线的增益;Cori 为基站天线的方向系数;GaMS为移动台发射天线的增益;GdBTS为基站接收天线的分集增益;Gta为使用塔放的情况下,由此带来的增益;LPup为上行路径损耗。

根据互易定理,即对于任一移动台位置,上行路损等于下行路损,即:LPdown = LPup设系统余量为DL ,移动台的恶化量储备为DNMS ,基站的恶化量储备为DNBTS,移动台的接收机灵敏度为MSsense,基站的接收机灵敏度为BTSsense, Lother为其它损耗,如建筑物贯穿损耗、车内损耗、人体损耗等。

于是,对于覆盖区内任一点,应满足:PinMS - DL - DNMS - Lother >= MSsensePinBTS - DL - DNMS - Lother >= BTSsense上下行链路平衡的目的是调整基站的发射功率,使得覆盖区边界上的点(离基站最远的点)满足:PinMS - DL - DNMS - Lother = MSsense于是,得到了基站的最大发射功率的计算公式:PoutBTS <= MSsense - BTSsense + PoutMS + GdBTS - GdMS + LslantBTS - Gta + DNMS - DNBTS2 各类损耗的确定◆ 建筑物的贯穿损耗建筑物的贯穿损耗是指电波通过建筑物的外层结构时所受到的衰减,它等于建筑物外与建筑物内的场强中值之差。

建筑物的贯穿损耗与建筑物的结构、门窗的种类和大小、楼层有很大关系。

贯穿损耗随楼层高度的变化,一般为-2dB/层,因此,一般都考虑一层(底层)的贯穿损耗。

下面是一组针对900MHz频段,综合国外测试结果的数据:--- 中等城市市区一般钢筋混凝土框架建筑物,贯穿损耗中值为10dB,标准偏差7.3dB;郊区同类建筑物,贯穿损耗中值为5.8dB,标准偏差8.7dB。

--- 大城市市区一般钢筋混凝土框架建筑物,贯穿损耗中值为18dB,标准偏差7.7dB;郊区同类建筑物,贯穿损耗中值为13.1dB,标准偏差9.5dB。

--- 大城市市区一金属壳体结构或特殊金属框架结构的建筑物,贯穿损耗中值为27dB。

由于我国的城市环境与国外有很大的不同,一般比国外同类名称要高8---10dB。

对于1800MHz,虽然其波长比900MHz短,贯穿能力更大,但绕射损耗更大。

因此,实际上,1800MHz 的建筑物的贯穿损耗比900MHz的要大。

GSM规范3.30中提到,城市环境中的建筑物的贯穿损耗一般为15dB,农村为10dB。

一般取比同类地区900MHz的贯穿损耗大5---10dB。

◆ 人体损耗对于手持机,当位于使用者的腰部和肩部时,接收的信号场强比天线离开人体几个波长时将分别降低4---7dB和1---2dB。

一般人体损耗设为3dB。

◆ 车内损耗金属结构的汽车带来的车内损耗不能忽视。

尤其在经济发达的城市,人的一部分时间是在汽车中度过的。

一般车内损耗为8---10dB。

◆ 馈线损耗在GSM900中经常使用的是7/8″的馈线,在1000MHz的情况下,每100米的损耗是4.3dB;在2000MHz的情况下,每100米的损耗则为6.46dB,多了2.16个dB。

相关主题