第一章1.1 若卢瑟福散射用的α粒子是放射性物质镭'C 放射的,其动能为67.6810⨯电子伏特。
散射物质是原子序数79Z =的金箔。
试问散射角150οθ=所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε==得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米式中212K Mvα=是α粒子的功能。
1.3 钋放射的一种α粒子的速度为71.59710⨯米/秒,正面垂直入射于厚度为710-米、密度为41.93210⨯3/公斤米的金箔。
试求所有散射在90οθ>的α粒子占全部入射粒子数的百分比。
已知金的原子量为197。
解:散射角在d θθθ+之间的α粒子数dn 与入射到箔上的总粒子数n 的比是:dnNtd nσ=其中单位体积中的金原子数:0//Au Au N m N A ρρ==而散射角大于090的粒子数为:2'dndn nNt d ππσ=⎰=⎰所以有:2'dn Nt d nππσ=⎰22218002903cos122()()4sin 2AuN Ze t d A Mu οοθρπθθπε=⋅⋅⎰ 等式右边的积分:180180909033cos sin 2221sin sin 22d I d οοοοθθθθθ=⎰=⎰=故'22202012()()4Au N dn Ze t n A Muρππε=⋅⋅ 648.5108.510--≈⨯=⨯即速度为71.59710/⨯米秒的α粒子在金箔上散射,散射角大于90ο以上的粒子数大约是4008.510-⨯。
1.4能量为3.5兆电子伏特的细α粒子束射到单位面积上质量为22/1005.1米公斤-⨯的银箔上,α粒子与银箔表面成ο60角。
在离L=0.12米处放一窗口面积为25100.6米-⨯的计数器。
测得散射进此窗口的α粒子是全部入射α粒子的百万分之29。
若已知银的原子量为107.9。
试求银的核电荷数Z 。
解:设靶厚度为't 。
非垂直入射时引起α度't ,而是ο60sin /'t t =,如图1-1所示。
因为散射到θ与θθd +之间Ωd 立体角内的粒子数dn 与总入射粒子数n 的比为:dnNtd nσ= (1)而σd 为:2sin)()41(422220θπεσΩ=d Mvze d (2把(2)式代入(1)式,得:2sin)()41(422220θπεΩ=d Mv ze Nt n dn ……(3) 式中立体角元0'0'220,3/260sin /,/====Ωθt t t L ds dN 为原子密度。
'Nt 为单位面上的原子数,10')/(/-==N A m Nt Ag Ag ηη,其中η是单位面积式上的质量;Ag m 是银原子的质量;Ag A 是银原子的原子量;0N 是阿佛加德罗常数。
将各量代入(3)式,得:2sin )()41(32422220θπεηΩ=d Mv ze A N n dn Ag由此,得:Z=471.5 动能为40MeV 的α粒子和静止的铅核(Z=82)作对心碰撞时的最小距离是多少?解:由公式: ])2/sin(11[2412020θπε+=Mv Ze r m , 当对心碰撞时,πθ=,1)2/sin(=θ,则 m)(109.5106.11040)106.1(82210924115196219920---⨯=⨯⨯⨯⨯⨯⨯⨯==απεE Ze r m 1.6 动能为0.87MeV 的质子接近静止的汞核(Z=80),当散射角2/πθ=时,它们之间的最小距离是多少? 解:最小距离为:])2/sin(11[241])2/sin(11[41202020θπεθπε+=+=p p m E Ze v m Ze r m )(1060.1]45sin 11[106.11087.02106.180109131962199---⨯=︒+⨯⨯⨯⨯⨯⨯⋅⨯=)( 1.7试计算氢原子的第一玻尔轨道上电子绕核转动的频率、线速度和加速度。
解:电子在第一玻尔轨道上即年n=1。
根据量子化条件,πφ2h nmvr p ==可得:频率 21211222ma hma nh a v πππν===赫兹151058.6⨯=速度:61110188.2/2⨯===ma h a v νπ米/秒 加速度:222122/10046.9//秒米⨯===a v r v w1.9 试由氢原子的里德伯常数计算基态氢原子的电离电势和第一激发电势。
解:电离能为1E E E i -=∞,把氢原子的能级公式2/n Rhc E n -=代入,得:Rhc hc R E H i =∞-=)111(2= 13.60电子伏特。
电离电势:60.13==eE V ii 伏特 第一激发能:20.1060.134343)2111(22=⨯==-=Rhc hc R E H i 电子伏特 第一激发电势:20.1011==eE V 伏特1.10 用能量为12.5电子伏特的电子去激发基态氢原子,问受激发的氢原子向低能基跃迁时,会出现那些波长的光谱线?解:把氢原子有基态激发到你n=2,3,4……等能级上去所需要的能量是:)111(22nhcR E H -= 其中6.13=H hcR 电子伏特2.10)211(6.1321=-⨯=E 电子伏特1.12)311(6.1322=-⨯=E 电子伏特8.12)411(6.1323=-⨯=E 电子伏特其中21E E 和小于12.5电子伏特,3E 大于12.5电子伏特。
可见,具有12.5电子伏特能量的电子不足以把基态氢原子激发到4≥n 的能级上去,所以只能出现3≤n 的能级间的跃迁。
跃迁时可能发出的光谱线的波长为:οοολλλλλλAR R A R R A R R H H H H H H 102598)3111(1121543)2111(1656536/5)3121(1322322221221==-===-===-=1.11 试估算一次电离的氦离子+e H 、二次电离的锂离子+i L 的第一玻尔轨道半径、电离电势、第一激发电势和赖曼系第一条谱线波长分别与氢原子的上述物理量之比值。
解:在估算时,不考虑原子核的运动所产生的影响,即把原子核视为不动,这样简单些。
a) 氢原子和类氢离子的轨道半径:31,2132,1,10529177.0443,2,1,4410222012122220=======⨯==⋯⋯===++++++++-Li H H Li H H H He Z Z r r Z Z r r Z Li Z H Z H Z me h a n Z n a mZe n h r e径之比是因此,玻尔第一轨道半;,;对于;对于是核电荷数,对于一轨道半径;米,是氢原子的玻尔第其中ππεππεb) 氢和类氢离子的能量公式:⋯⋯=⋅=-=3,2,1,)4(22212220242n nZ E h n Z me E πεπ 其中基态能量。
电子伏特,是氢原子的6.13)4(2220421-≈-=hme E πεπ 电离能之比:900,4002222==--==--+++++HLi HLi HHeHHe ZZ E E Z Z E Ec) 第一激发能之比:91121132341121122222122122122112122212212212211212=--=--=--=--E E E E E E E E E E E E E E E E H H Li Li H H He He d) 氢原子和类氢离子的广义巴耳末公式:)11(~22221n n R Z v -=,⋯⋯=⋯⋯++=3,2,11112)2(),1({n n n n其中32042)4(2hme R πεπ=是里德伯常数。
氢原子赖曼系第一条谱线的波数为:HH R v λ1)2111(~221=-=相应地,对类氢离子有:++++++=-==-=Li Li He He R v R v 12221122211)2111(3~1)2111(2~λλ因此,91,411111==+++H Li HHe λλλλ 1.15 试问二次电离的锂离子++i L 从其第一激发态向基态跃迁时发出的光子,是否有可能使处于基态的一次电离的氦粒子+e H 的电子电离掉?解:++i L 由第一激发态向基态跃迁时发出的光子的能量为:+e H 的电离能量为:LiHeHe Li He Li HeHe He M m M m R R hv hv hcR hcR v /1/1162716274)111(42++⋅===∞-=++++由于Li He Li He M m M m M M /1/1,+>+<所以,从而有+++>He Li hv hv ,所以能将+e H 的电子电离掉。
1.17 已知一对正负电子绕其共同的质心转动会暂时形成类似于氢原子结构的“正电子素”。
试计算“正电子素”由第一激发态向基态跃迁发射光谱的波长λ为多少οA ?解:R mmR R e e 834311)2111(122=•+=-=∞-+λ ολA R 2430109737313138=⨯==∞米1.18氢与其同位素氘(质量数为2)混在同一放电管中,摄下两种原子的光谱线。
试问其巴耳末系的第一条(αH )光谱线之间的波长差λ∆有多大?已知氢的里德伯常数17100967758.1-⨯=米H R ,氘的里德伯常数17100970742.1-⨯=米D R 。
解:)3121(122-=H HR λ,H H R 5/36=λ )3121(122-=D DR λ,D D R 5/36=λολλλAR R D H D H 79.1)11(536=-=-=∆1.19 Li 原子序数Z=3,其光谱的主线系可用下式表示:22)0401.0()5951.01(~--+=n R R v。
已知锂原子电离成+++Li 离子需要203.44电子伏特的功。
问如把+Li 离子电离成++Li离子,需要多少电子伏特的功?解:与氢光谱类似,碱金属光谱亦是单电子原子光谱。
锂光谱的主线系是锂原子的价电子由高的p 能级向基态跃迁而产生的。
一次电离能对应于主线系的系限能量,所以+Li 离子电离成++Li离子时,有电子伏特35.5)5951.01()5951.01(221=+≈∞-+=∞hc R RhcRhc E ++Li 是类氢离子,可用氢原子的能量公式,因此+++++→Li Li 时,电离能3E 为:电子伏特4.12212223=≈=∞hc R Z Rhc Z E R。