当前位置:文档之家› 电气工程导论总结 电气1612 张祖望

电气工程导论总结 电气1612 张祖望

电气工程导论总结班级:电气1612 姓名:张祖望学号:161001120216目录:电气工程学科简介。

电机电器及其控制技术。

电力系统简介电力电子及传动装置新能源一第一章:电气工程学科简介电气工程(Electrical Engineering),简称EE,是现代科技领域中的核心学科和关键学科。

例如正是电子技术的巨大进步才推动了以计算机网络为基础的信息时代的到来,并将改变人类的生活工作模式等等。

美国大学电气工程学科在机构名称上有的学校称电气工程系,有的称为电气工程与信息科学系,有的称为电气工程与计算机科学系等等传统的电气工程定义为用于创造产生电气与电子系统的有关学科的总和。

此定义本已经十分宽泛,但随着科学技术的飞速发展,21世纪的电气工程概念已经远远超出上述定义的范畴,斯坦福大学教授指出:今天的电气工程涵盖了几乎所有与电子、光子有关的工程行为。

电气工程(Electrical Engineering简称EE)是现代科技领域中的核心学科之一,更是当电气工程今高新技术领域中不可或缺的关键学科。

例如正是电子技术的巨大进步才推动了以计算机网络为基础的信息时代的到来,并将改变人类的生活工作模式等等。

从某种意义上讲,电气工程的发达程度代表着国家的科技进步水平。

正因为此,电气工程的教育和科研一直在发达国家大学中占据十分重要的地位。

电气工程美国大学电气工程学科在机构名称上有的学校称电气工程系,有的称为电气工程与信息科学系,有的称为电气工程与计算机科学系等等。

该学科(系)在科研、教学及学术组织形式上与国内电气工程学科有较大不同。

了解国外学科状态及教学、科研方向,对调整我们的学科方向、提高教学、科研水平具有十分重要的作用。

传统的电气工程定义为用于创造产生电气与电子系统的有关学科的总和。

此定义本已经十分宽泛,但随着科学技术的飞速发展,21世纪的电气工程概念已经远远超出上述定义的范畴,斯坦福大学教授指出:今天的电气工程涵盖了几乎所有与电子、光子有关的工程行为。

本领域知识宽度的巨大增长,要求我们重新检查甚至重新构造电气工程的学科方向、课程设置及其内容,以便使电气工程学科能有效地回应学生的需求、社会的需求、科技的进步和动态的科研环境。

主要课程:电路原理、模拟电子技术、数字电子技术、微机原理及应用、信号与系统、自动控制原理、电机与拖动、电力电子技术、电力拖动自动控制系统、电气控制技术与PLC应用、微机控制技术、电力系统分析、发电厂电气部分、电机学、电力系统自动装置原理、电工学、高电压与绝缘技术、电气工程专业英语、电力系统稳态分析、电力系统暂态分析、高电压技术、高压直流输电技术、继电保护。

影响因素:1、信息技术的决定性影响信息技术广泛地定义为包括计算机、世界范围高速宽带计算机网络及通讯系统,以及用来传感、处理、存储和显示各种信息等相关支持技术的综合。

信息技术对电气工程的发展具有特别大的支配性影响。

信息技术持续以指数速度增长在很大程度上取决于电气工程中众多学科领域的持续技术创新。

反过来,信息技术的进步又为电气工程领域的技术创新提供了更新更先进的工具基础。

2、与物理科学的相互交叉面拓宽由于三极管的发明和大规模集成电路制造技术的发展,固体电子学在20世纪的后50年对电气工程的成长起到了巨大的推动作用。

电气工程与物理科学间的紧密联系与交叉仍然是今后电气工程学科的关键,并且将拓宽到生物系统、光子学、微机电系统(MEMS)。

21世纪中的某些最重要的新装置、新系统和新技术将来自上述领域。

3、快速变化技术的飞速进步和分析方法、设计方法的日新月异,使得我们必须每隔几年对工程问题的过去解决方案重新全面思考或审查。

这对我们如何聘用新的教授,如何培养我们的学生有很大影响。

应用范围电气自动化用于工业控制系统,例如一条设备怎样运行才能保证它能正常生产出合格的产品,现代工业不是全人工,靠人来操作,却是由机器来制作,启动机器,就会自己运行下去,机器之所以能自动运行,就是电气自动化,所谓电气自动化,就是利用继电器、感应器等电气元件实现顺序控制、时间控制的过程。

其他如一些仪表或伺服电机,能根据外界环境的变化反馈到内部,从而改变输出量,达到稳定的目的。

第二章:电机电器及其控制技术机与电器控制》将"电机原理"、"电力拖动基础"和"电器控制"三门谭程进行了有机结合,整合成一门课程"电机与电器控制",紧缩了学时,特别是密切了电力拖动和电器控制两者的联系,避免了它们中共性部分的重复。

《电机与电器控制》共分五章,主要内容包括:常用低压电器的结构、原理及用途;变压器、直流电机和三相异步电动机的工作原理、结构特点和电磁能量关系;交、直流电动机电力拖动的基本原理和控制方法,以及典型机械设备电气控制系统分析。

《电机与电器控制》在编写过程中,注重应用,淡化了较为繁琐的数学推导,并力求深入浅出,通俗易懂。

坚持科学性、实用性、综合性和新颖性。

变压器是变换交流电压、电流和阻抗的器件,当初级线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)。

随着变压器行业的不断发展,越来越多的行业和企业运用上变压器,越来越多的企业进入了变压器行业,变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。

三相变压器广泛适用于交流50Hz至60Hz,电压660V以下的电路中,广泛用于进口重要设备、精密机床、机械电子设备、医疗设备、整流装置,照明等。

产品的各种输入、输出电压的高低、联接组别、调节抽头的多少及位置(一般为±5%)、绕组容量的分配、次级单相绕组的配备、整流电路的运用、是否要求带外壳等,均可根据用户的要求进行精心的设计与制造。

应用范围三相变压器产品广泛用于工矿企业、纺织机械、印刷包装、石油化工、学校、商场、电梯、邮电通信、医疗机械,办公设备、测试设备,工业自动化设备、家用电器,高层建筑,机床,隧道的输配电及进口设备等所有需要正常电压保证的场合。

分析解刨变压器是变换交流电压、电流和阻抗的器件,当初级线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)。

随着变压器行业的不断发展,越来越多的行业和企业运用到了变压器,越来越多的企业进入了变压器行业,变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。

变压器参数变量浏览数:三相变压器参数变量几个非主要参变量的注解,三相变压器参变量1定额功率正在频次和电压下,电流变压器的特点标志参变量2定额电压斧政在变压器的线圈上所答当的电压。

变压器能长久工做,而不翻越温升的输出功率。

3电压比指变压器高等电压和次级电压的比率,无空载电压比和负载电压比的差异。

4工做频次变压器铁芯伤耗取频次关系非常大,故当依照利用频次来设想和利用,那类频次称工做频次。

5速率指次级功率P2取初等功率P1比率的百分率。

只要是变压器的定额功率愈大,速率就愈高。

6空载伤耗指变压器次级开时,正在高等测得功率伤耗。

非主要伤耗是铁芯伤耗,其次是空载电流正在原线圈铜阻上发生的伤耗(铜损)那部门伤耗细小。

6空载电流三相变压器次级开时仍无定然的电流,那部门电流称为空载电流。

空载电流由磁化电流(发生磁通)和铁损电流(由铁芯伤耗惹起)构成。

对于50Hz 电流变压器而言,空载电流根基等级高的于磁化电流。

7绝缘电阻私下示意变压器各线圈之间、各线圈取铁芯之间的绝缘机能。

绝缘电阻的凹凸取所利用的绝缘资料的机能、温度凹凸和潮润程度有关。

使用说明1.变压器接法与联结组2.国内60与35kV的输电系统电压有二种不同相位角。

三相五柱式铁心变压器必须采用YN,yn0,yn0接法时,在变压器内要有接成角形接法的第四绕组,它的出头不引出(结构上要做电气试验时引出的出头不在此例)。

用于国内变压器的高压绕组一般联成Y接法,中压绕组与低压绕组的接法要视系统情况而决定。

所谓系统情况就是指高压输电系统的电压相量与中压或低压输电系统的电压相量间关系。

如低压系配电系统,则可根据标准规定决定。

微机保护装置三相变压器微机保护装置由高集成度、总线不出芯片单片机、高精度电流电压互感器、高绝缘强度出口中间继电器、高可靠开关电源模块等部件组成。

微机保护装置主要作为110KV及以下电压等级的发电厂、变电站、配电站等,也可作为部分70V-220V之间电压等级中系统的电压电流的保护及测控。

差动保护装置三相变压器差动保护装置主要是用于保护变压器设备的。

变压器差动保护装置应具备差动速断保护及带或不带二次谐波制动的复式比率差动保护,最大可用于三侧差流输入的场合(三圈变),具有对一次设备电压电流模拟量和开关量的完整强大的采集功能,配备标准RS485和工业CAN通讯口,并通过合理配置实现三圈主变差动保护、两圈主变差动保护、两圈配变差动保护、非电量保护等保护和测控功能。

12月12日,阿根廷经济和公共财政部外贸国务秘书处照会我处,通告阿方决定继续延长对原产于中国和韩国的1万至60万千瓦油浸式三相变压器的反倾销调查期限。

延长时限为6个月。

第三章:电力系统简介由发电、输电、变电、配电和用电等环节组成的电能生产与消费系统。

它的功能是将自然界的一次能源通过发电动力装置转化成电能,再经输电、变电和配电将电能供应到各用户。

为实现这一功能,电力系统在各个环节和不同层次还具有相应的信息与控制系统,对电能的生产过程进行测量、调节、控制、保护、通信和调度,以保证用户获得安全、经济、优质的电能。

由发电、输电、变电、配电和用电等环节组成的电能生产与消费系统。

它的功能是将自然界的一次能源通过发电动力装置转化成电能,再经输电、变电和配电将电能供应到各用户。

为实现这一功能,电力系统在各个环节和不同层次还具有相应的信息与控制系统,对电能的生产过程进行测量、调节、控制、保护、通信和调度,以保证用户获得安全、经济、优质的电能(图1)。

电力系统的出现使电能得到广泛应用,推动了社会生产各个领域的变化,开创了电力时代,出现了近代史上的第二次技术革命。

20世纪以来,电力系统的大发展使动力资源得到更充分的开发,工业布局也更为合理,使电能的应用不仅深刻地影响着社会物质生产的各个侧面,也越来越广地渗透到人类日常生活的各个层面。

电力系统的发展程度和技术水准已成为各国经济发展水平的标志之一。

发展简况最早的电力系统是简单的住户式供电系统,由小容量发电机单独向灯塔、轮船、车间等照明供电。

白炽灯的发明,使电能的应用进入千家万户,从而出现了中心电站式供电系统,如1882年T.A.爱迪生在纽约主持建造了珍珠街电站。

它装有6台直流发电机,总容量为900马力(约670千瓦),用110伏电压供给电灯照明(开始时,近1300盏灯)。

相关主题