第一章 随机事件及其概率知识点:概率的性质 事件运算 古典概率事件的独立性 条件概率 全概率与贝叶斯公式常用公式)()()()()()2(加法定理AB P B P A P B A P -+= ),,()()(2111有限可加性两两互斥设n ni i ni i A A A A P A P ∑===),(0)()()()()(互不相容时独立时与B A AB P B A B P A P AB P ==)()()()()5(AB P A P B A P B A P -==-)()()()()(时当A B B P A P B A P B A P ⊂-==-))0(,,()()/()()()6(211>Ω=∑=i n ni i i A P A A A A B P A P B P 且的一个划分为其中全概率公式 ),,()](1[1)(2111相互独立时n ni i n i i A A A A P A P ∏==--=)/()()/()()()4(B A P B P A B P A P AB P ==)(/)()/()3(A P AB P A B P =)()/()()/()()/()7(1逆概率公式∑==ni iii i i A B P A P A B P A P B A P )(/)()(/)()1(S L A L AP nr A P ==应用举例1、已知事件,A B 满足)()(B A P AB P =,且6.0)(=A P ,则=)(B P ( )。
2、已知事件,A B 相互独立,,)(k A P =6.0)(,2.0)(==B A P B P ,则=k ( )。
3、已知事件,A B 互不相容,,3.0)(=A P ==)(,5.0)(B A P B P 则( )。
4、若,3.0)(=A P===)(,5.0)(,4.0)(B A B P B A P B P ()。
5、,,A B C 是三个随机事件,C B ⊂,事件()A C B -与A 的关系是( )。
6、5张数字卡片上分别写着1,2,3,4,5,从中任取3张,排成3位数,则排成3位奇数的概率是( )。
某日他抛一枚硬币决定乘地铁还是乘汽车。
(1)试求他在5:40~5:50到家的概率;(2)结果他是5:47到家的。
试求他是乘地铁回家的概率。
解(1)设1A ={他是乘地铁回家的},2A ={他是乘汽车回家的},i B ={第i 段时间到家的},4,3,2,1=i 分别对应时间段5:30~5:40,5:40~5:50,5:50~6:00,6:00以后 则由全概率公式有)|()()|()()(2221212A B P A P A B P A P B P +=由上表可知4.0)|(12=A B P ,3.0)|(22=A B P ,5.0)()(21==A P A P35.05.03.04.05.0)(2=⨯+⨯=B P (2)由贝叶斯公式7435.04.05.0)()()|(22121=⨯==B P B A P B A P8、盒中12个新乒乓球,每次比赛从中任取3个来用,比赛后仍放回盒中,求:第三次比赛时取到3个新球的概率。
看作业习题1: 4, 9, 11, 15, 16第二章 随机变量及其分布知识点:连续型(离散型)随机变量分布的性质连续型(离散型)随机变量分布(包括随机变量函数的分布) 常用分布重要内容)(R x x f ∈≥0)()()()(12121x F x F x x x F ≤⇒<单调递增,即)(1)(lim )(0)(lim )(2==+∞==-∞+∞→-∞→x F F x F F x x )()()0()(3x F x F x F =+右连续,即)(Rx x F ∈≤≤10)4()(1=∑iip2.分布律的性质...)2,1(,10=≤≤i p i 1.分布函数的性质(1)非负性 (2)规范性3.分布密度函数的性质⎰+∞∞-=1)(dx x f (1)非负性 (2)规范性4. 概率计算5.常用分布)(或泊松分布λλπP X X ~)(~)0,...;1,0(,!)(>===-λλλk e k k X P k1221()()()P x X x P X x P X x ∴<≤=≤-≤)()(a F a X P =≤)0()()(--==a F a F a X P ⎰=≤<21)()(21x x dxx f x X x P 0)0()()(=--==a Fa F a X P ⎰+∞=<adx x f X a P )()(⎰∞-=≤adx x f a X P )()(为连续型随机变量:X ),(~,~p n b X p n B X )或(记为 二项分布: ),...1,0(,)(n k qp C k X P kn kk n===-条件:n较大且p很小泊松定理)(,!)1(np e k p p C kkn kk n=≈---λλλ⎪⎩⎪⎨⎧≤≤-=,其他均匀分布0,1)(),(~b x a a b x f b a U X ⎩⎨⎧>≥=-,其他指数分布0)0(,0,)()(~λλλλx e x f E X x ),(,21)(),(~222)(2+∞-∞∈⋅=--x ex f N X x σμσπσμ正态分布⎪⎭⎫⎝⎛-Φ=σμx x F )(5.0)0()1(=Φ)(1)()2(x x Φ-=-Φ73.99}3|{|%45.95}2|{|%27.68}1|{|=⋅<-=⋅<-=⋅<-∴σμσμσμX P X P X P应用举例1、设2()(0)x f x ke x -=>是某随机变量的密度函数,则k =( )。
2、设随机变量X 的概率密度为)22(,cos 21)(ππ+≤≤-=x x x f ,则)01(<<-X P =()。
3、设随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤<=.,1,1,ln ,1,0)(e x e x x x x F 则)2(>X P =()。
4、设),(~2σμN X ,满足)1()1(-≤=->X P X P 的参数μ=( )。
5、离散型随机变量X 的分布律为11()(1,2,3)!P X k k c k ===,则c =( )。
6、土地粮食亩产量(单位:kg ))60,360(~2N X.按亩产量高低将土地分成等级.若亩产量高于420kg 为一级,在360~420kg 间为二级,在315~360kg 间为三等,低于315kg 为四级.求等级Y 的概率分布。
(5.0)0(=Φ,8413.0)1(=Φ,7734.0)75.0(=Φ) 解⎪⎪⎩⎪⎪⎨⎧≤≤<≤<<=3154360315342036024201X X X XY7、110在长度为t 的时间(单位:h)间隔内收到的紧急呼救的次数X 服从参数为t 21的泊松分布,而与时间间隔的起点无关.求某一天中午12时至下午3时至少收到1次呼救的概率。
解X 的分布律为),2,1,0(!)2()(2===-k k t e k X P kt中午12时到下午3时,表明3=t 求)1(≥X P8、一批产品由8件正品、2件次品组成。
若随机地从中每次抽取一件产品后,无论抽出的是正品还是次品总用一件正品放回去,直到取到正品为止,求抽取次数X的分布律。
解X所有可能的取值为1,2,3A={第i次取到正品}(3,2,1 i)i看作业习题2: 4,7, 17,20,24,26, 27,28第三章 多维随机变量及其分布知识点:二维连续型(离散型)随机变量分布的性质 二维连续型(离散型)随机变量的分布(包括边际分布) 随机变量的独立性 二维常用分布 内容提要 1.概率分布的性质2.二维概率计算3.边际密度函数计算4.常用分布,2,1,,0=≥j i p ij 离散型非负性111=∑∑∞=∞=i j ijp归一性1),(=⎰⎰+∞∞-+∞∞-dxdy y x f 连续型归一性⎰+∞∞-=;),()(dy y x f x f X ⎰+∞∞-=dxy x f y f Y ),()({(,)}(,)GP X Y G f x y dxdy∈=⎰⎰⎪⎩⎪⎨⎧∈=其他),(),(均匀分布01Dy x Ay x f二维正态分布5.随机变量的独立性6.正态分布的可加性)()(),(y F x F y x F Y X ⋅=),2,1,( =⨯=⋅⋅j i p p p ji ij )()(),(y f x f y x f Y X ⨯=21221211~(,)(1,2),,,~(,)i i in nnn i ii i N i n N ξμσξξξξξξμσ===++∑∑设且相互独立则),(~),,(~222211σμσμN Y N X ),,,,(~),(222121ρσσμμN Y X应用举例1、设()Y X ,的密度函数()⎩⎨⎧>>=--其他,00,0,,2y x ke y x f y x 则k =( )。
2、设离散型随机变量(,)X Y 的联合分布律为(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)1/61/91/181/3X Y Pαβ且Y X ,相互独立,则( )。
3、某箱中有100件产品,其中一、二、三等品分别为70、20、10件,现从中随机的抽取一件,记⎩⎨⎧=等品抽到其它i X i10,3,2,1=i 求(1)1X 和2X 的联合分布律;(2)并求)(21X X P ≠。
4、设随机变量),(Y X 在曲线x y =,xy =围成的区域D 里服从均匀分布,求联合概率密度和边缘概率密度。
5、设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧≤≤=其它01421),(22y x y x y x f 求)(X Y P <6、设随机变量321,,X X X 相互独立,并且均服从正态分布3,2,1),,(~2=i N X ii i σμ,则∑=+=31~)(i i i i b X a X ()。
看作业习题3: 1,2,3,4,5,6,7,9,10,11,12,13,18第四章 随机变量的数字特征知识点:随机变量的数学期望的性质与计算随机变量的方差(协方差、相关系数)的性质与计算 主要内容1、数学期望的计算⎰∑∞+∞-==dxx xf X E px X E X E X iii )()()().(,1连续型离散型求的分布已知)(⎰∑∞+∞-===dxx f x g Y E px g Y E Y E X g Y X iii)()()()()().(),(,2连续型离散型求且的分布已知)(dydx y x yf Y E p yY E dydx y x xf X E px X E Y E X E Y X R jiijjR ij iji⎰⎰∑∑⎰⎰∑∑====22),()()(),()()(:1).()(,),(4连续型离散型连续型离散型方法或求的联合分布已知)(dydx y x f y x g Z E py x g Z E Z E Y X g Z Y X R ijijji⎰⎰∑∑===2),(),()(),()().(),,(),(3连续型离散型求,且的联合分布已知)(⎰∑⎰∑∞+∞-∞+∞-====dyy yf Y E p yY Edxx xf X E px X E Y jjj X i ii )()()()()()(,:2..连续型离散型连续型离散型则先求出边际分布方法2、性质当随机变量相互独立时3、方差的计算4,、方差性质5、协方差与相关系数协方差的计算EXEY EXY Y X COV -=),(DY DXY X COV XY ρ=),(相关系数的计算DYDXY X COV XY ),(=ρ)()()()(2121n n X E X E X E X X X E +++=+++ 1212()()();()()()().n n E XY E X E Y E X X X E X E X E X =⋅=⋅2()()D XE X EX =-即22()()[()]D XE X E X =-易证2(2)()()D aX b a D X +=2,()()D aX a D X =特别地(3)()()()2{[()][()]}DX Y D X D Y E X E X Y E Y ±=+±--(1)()0D c =,,()()()X Y D X Y D X D Y ±=+特别地当与独立时12:,,n X X X 推广当相互独立时有∑∑===ni in i i DX X D 11)((,)[()][()]Cov X Y E X E X Y E Y =--应用举例1. 某农产品的需求量X(单位:吨)服从区间[1200,3000]上的均匀分布。