zgmn13
国标的ZGMn13,也就是德标X120Mn12。
几年前上海已有人开发生产了Mn13的轧制钢板,各种性能均高于ZGMn13很多。
在强冲击、大压力的环境下,Mn13轧制钢板的耐磨性能非常优良。
经预加工处理后的Mn13轧制钢板在无冲击或较小压力的环境下,耐磨性能也远高于进口低合金耐磨钢,当然比国产耐磨钢NM420也要强很多。
而且切割焊接性能也非常好。
目前在抛丸机行业应用非常广泛,价格也比几年前低了很多。
Mn13特性及适用范围:
具有高的抗拉强度、塑性和韧性以及无磁性,即使零件磨损到很薄,
仍能承受较大的冲击载荷而不致破裂,可用于铸造各种耐冲击的磨损件,
如球磨机衬板、挖掘机斗齿、破碎机牙板等。
一般用于结构简单,
要求以耐磨为主的低冲击铸件,如衬板、齿板、破碎壁、轧臼壁、辊套和铲齿。
这类钢含锰10%~15%,碳含量较高,一般为0.90%~1.50%,大部分在1.0%以上。
其化学成分为(%):C0.90~1.50Mn10.0~15.0 Si0.30~1.0 S≤0.05 P≤0.10这类高锰钢的用量最多,常用来制作挖掘机的铲齿、圆锥式破碎机的轧面壁和破碎壁、颚式破碎机岔板、球磨机衬板、铁路辙岔、板锤、锤头等。
上述成分的高锰钢的铸态组织通常是由奥氏体、碳化物和珠光体所组成,有时还含有少量的磷共晶。
碳化物数量多时,常在晶界上呈网状出现。
因此铸态组织的高锰钢很脆,无法使用,需要进行固溶处理。
通常使用的热处理方法是固溶处理,即将钢加热到1050~1100℃,保温消除铸态组织,得到单相奥氏体组织,然后水淬,使此种组织保持到常温。
热处理后钢的强度、塑性和韧性均大幅度提高,所以此种热处理方法也常称为水韧处理。
热处理后力学性能为:σb615~1275MPa σ 0.2340~470MPa ζ15%~85%ψ15%~45%aKl96~294J/cm2 HBl80~225 高锰钢经过固溶处理后还会有少量的碳化物未溶解,当其数量较少符合检验标准时,仍可使用。
奥氏体组织的高锰钢受到冲击载荷时,金属表面发生塑性变形。
形变强化的结果,在变形层内有明显的加工硬化现象,表层硬度大幅度提高。
低冲击载荷时,可以达到HB300~400,高冲击载荷时,可以达到HB500~800。
随冲击载荷的不同,表面硬化层深度可达10~20mm。
高硬度的硬化层可以抵抗冲击磨料磨损。
高锰钢在强冲击磨料磨损条件下,有优异的抗磨性能,故常用于矿山、建材、火电等机械设备中,制作耐磨件。
在低冲击工况条件下,因加工硬化效果不明显,高锰钢不能发挥材料的特性。
中国常用的高锰钢的牌号及其适用范围是:ZGMn13—1(C 1.10%~1.50%)用于低冲击件,
ZGMn13—2(C1.00%~1.40%)用于普通件,ZGMn13—3(C0.90%~1.30%)用于复杂件,ZGMn13-4(C0.90%~1.20%)用于高冲击件。
以上4种牌号钢的锰含量均为11.0%~14.0%。
在冲击载荷作用的冷变形过程中,由于位错密度大量增加,位错的交割、位错的塞积及位错和溶质原子的交互作用使钢得到强化。
这是加工硬化的重要原因。
另一个重要原因则是高锰奥氏体的层错能低,形变时容易出现堆垛层错,从
而为ε马氏体的形成和形变孪晶的产生创造了条件。
常规成分的高锰钢的形变硬化层中常可以看到高密度位错、位错塞积和缠结。
ε马氏体和形变孪晶的出现使钢难以变形,尤其是后者的作用更大。
上述各种因素都使高锰钢的硬化层得到很高程度的强化,硬度大幅度提高。
高锰钢极易加工硬化,因而很难加工,绝大多数是铸件,极少量用锻压方法加工。
高锰钢的铸造性能较好。
钢的熔点低(约为14()()℃),钢的液、固相线温度间隔较小,(约为50℃),钢的导热性低,因此钢水流动性好,易于浇注成型。
高锰钢的线膨胀系数为纯铁的1.5倍,为碳素钢的2倍,故铸造时体积收缩和线收缩率均较大,容易出现应力和裂纹。
为提高高锰钢的性能进行过很多合金化、微合金化、碳锰含量调整和沉淀强化处理等方面的研究,并在生产实践中得到应用。
介稳奥氏体锰钢的出现则可较局gao大幅度降低钢中碳、锰含量并使钢的形变强化速度提高,可适用于高和中低冲击载荷的工况条件,这是高锰钢的新发展。
Mn13焊接工艺
高锰钢是指含碳量为0.9%~1.3%,含锰量为11.0%~14.0%的铸钢,即ZGMn13。
此材料在1000~1100℃之间为单一奥氏体组织,为保持此组织,需高温淬火,
即在1100~1050℃间的温度内立即水淬至常温。
经过热处理后的高锰钢,如果再加热到250℃以上,
就会有碳化物析出,其脆性增加,再有此材料的线胀系数大,易出现较大内应力,
如果采取常规焊接工艺焊接会出现开裂现象,原因是焊后缓冷到950~250℃的温度区间内,
会有大量碳化物析出,使母材变脆,再有内应力大,冷却后检查焊缝与母材间已开裂。
解决此问题,
就要根据此材料的特殊性质,采取特殊焊接工艺,采取间断焊接、焊后立即水冷至常温的办法,使焊缝避开那段温度区。
结果是成功的.ZGMn13高锰钢的焊接较差,焊接时的主要问题是:⑴热影响区碳化物的析出高锰钢经1050℃水韧处理后,
碳全部固溶于奥氏体中,室温下呈单相奥氏体组织,具有良好的韧性,但当重新加热超过250℃时,碳就会沿晶界析出碳化物,
使材料的韧性大大下降,因此焊补后,在热影响区的一个区段内会不同程度地析出碳化物,不仅失去韧性变脆,
而且还会降低耐磨性和冲击韧度。
解决的措施是加快施焊时焊件的冷却速度,缩短在高温下停留的时间,以减少碳化物的析出。
⑵热裂纹倾向严重ZGMn13高锰钢的线膨胀系数是低碳钢的1.6倍,但热导率仅是低碳钢的1/6,所以焊接时会产生很大的应力,
在S、P有害杂质的作用下,产生焊缝热裂纹和热影响区的液化裂纹。
解决的措施是严格控制母材中的S、P含量,
特别是焊接材料中的S、P含量;其次是采用锤击焊缝等工艺措施,减少焊接应力。
如何正确地选用ZGMn13奥氏体高锰钢焊接时的焊接材料?⑴焊条用于ZGMn13奥氏体高锰钢焊接的焊条为低碳钢焊芯
,并在药皮中加入适量合金元素,使熔敷金属得到高锰钢的化学成分和力学性能。
用于焊接ZGMn13奥氏体高锰钢的焊条有两种类型:
一种是高锰钢型焊条D256(EDMn-A-16)和(EDMn-B-16),主要用于堆焊受严重冲击磨料磨损零件,如碎石机颚板等;
另一种是Cr-Mn型焊条D276(EDCrMo-B-16)和D277(EDCrMo-B-15),其堆焊金属处于介稳定状态的高锰奥氏体,
当受到强烈冲击后转变为马氏体,主要用于耐气蚀的堆焊或高锰钢堆焊,如水轮机叶片、挖掘机斗齿等。
⑵焊丝焊接ZGMn13奥氏体高锰钢用焊丝有Mn-Ni、Mn-Cr、Mn-Mo、Mo-Ni-Cr系高锰钢焊丝和Cr-Ni、Cr-Ni-Mn系合金钢焊丝,
其化学成分,见表31。
Cr-Ni系焊丝不仅具有较高的耐腐蚀性能,能冲击载荷下能声速被加工硬化,
而且还在焊接高锰钢与碳钢或低合金钢的异种钢时容许有较高的稀释,可用来作为高锰钢与碳钢焊接时的填充材料。
ZGMn13奥氏体高锰钢的焊接工艺。
焊补或焊接ZGMn13奥氏体高锰钢时,应该采用热源集中、线能量小的焊接方法,
如手弧焊、熔化极气体保护焊等,不推荐使用气焊和钨极氩弧焊。
焊补或焊接工艺:1)焊前必须清理焊补处的泥垢、
油垢和铁锈,仔细检查有无起层、裂纹、夹砂、气孔和缩孔等缺陷。
若有这些缺陷,必须用砂轮或电弧气刨铲出。
磨损的部位必须用砂轮磨去硬化层,因为硬化层的金属对裂纹十分敏感。
2)焊前不应预热,多层焊时层间温度不应超过300℃,
以防止过热使热影响区脆化。
3)焊接时要尽可能地采用小线能量,尽量减少基本金属受热,采取措施为尽可能地加快接头的冷却。
为此,用短弧、直流反极性、跳焊、短段焊、间隙焊、脉冲焊等工艺措施,采用这些措施能在一定程度上减少碳化物的析出。
4)为防止产生热裂纹,可采用Cr-Mn或Cr-Ni奥氏体钢焊条打底。
如果在低碳钢或低合金钢上堆焊ZGMn13奥氏体高锰钢时,
可以先焊一层Cr-Ni或Cr-Mn奥氏体钢作隔离焊道,以防产生裂纹。
5)焊后为消除焊接应力,可用尖锤锤击焊接区。
为使熔敷金属得到奥氏体组织,锤击后要迅速将焊接区进行喷水冷却。
Mn13、X120Mn12钢板常用规格6-30厚度,特殊规格最薄可达1.0mm,
最厚100.0mm。
圆钢少量现货。
可顶扎方钢等高锰钢型钢。